
Data Workspaces Documentation
Release 1.5.2

Max Planck Institute for Software Systems and Data-ken Research

Mar 14, 2022

CONTENTS:

1 Data management for reproducability and collaboration 1
1.1 1. Introduction . 1
1.2 2. Tutorial . 10
1.3 3. Command Reference . 16
1.4 4. Lineage API . 28
1.5 5. Kits Reference . 33
1.6 6. Resource Reference . 44
1.7 7. Internals: Developer’s Guide . 50
1.8 Indices and tables . 65

Python Module Index 67

Index 69

i

ii

CHAPTER

ONE

DATA MANAGEMENT FOR REPRODUCABILITY AND
COLLABORATION

Data Workspaces is an open source framework for maintaining the state of a data science project, including data sets,
intermediate data, results, and code. It supports reproducability through snapshotting and lineage models and collab-
oration through a push/pull model inspired by source control systems like Git.

Data Workspaces is installed as a Python 3 package and provides a Git-like command line interface and programming
APIs. Specific data science tools and workflows are supported through extensions called kits. The goal is to provide
the reproducibility and collaboration benefits with minimal changes to your current projects and processes.

Data Workspaces runs on Unix-like systems, including Linux, MacOS, and on Windows via the Windows Subsystem
for Linux.

Data Workspaces lets you:

1. Track and version all the different resources for your data science project from one place.

2. Automatically track the full history of your experimental results. Scripts can easily be developed to build reports
on these results.

3. Reproduce any prior experiment, including the source data, code, and configuration parameters used.

4. Go back to a prior experiment as a “branching-off” point to explore additional permuations.

5. Collaborate with others on the same project, sharing data, code, and results.

6. Easily reproduce your environment on a new machine to parallelize work.

7. Publish your environment on a site like GitHub or GitLab for others to download and explore.

1.1 1. Introduction

1.1.1 Quick Start

Here is a quick example to give you a flavor of the project, using scikit-learn and the famous digits dataset running in
a Jupyter Notebook.

First, install1 the libary:

pip install dataworkspaces

Now, we will create a workspace:
1 See the Installation section for more options and details.

1

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://scikit-learn.org

Data Workspaces Documentation, Release 1.5.2

mkdir quickstart
cd ./quickstart
dws init --create-resources code,results

This created our workspace (which is a git repository under the covers) and initialized it with two subdirectories, one
for the source code, and one for the results. These are special subdirectories, in that they are resources which can be
tracked and versioned independently.

Now, we are going to add our source data to the workspace. This resides in an external, third-party git repository. It is
simple to add:

git clone https://github.com/jfischer/sklearn-digits-dataset.git
dws add git --role=source-data --read-only ./sklearn-digits-dataset

The first line (git clone ...) makes a local copy of the Git repository for the Digits dataset. The second line (dws
add git ...) adds the repository to the workspace as a resource to be tracked as part of our project. The --role
option tells Data Workspaces how we will use the resource (as source data), and the --read-only option indicates that
we should treat the repository as read-only and never try to push it to its origin2 (as you do not have write permissions
to the origin copy of this repository).

We can see the list of resources in our workspace via the command dws report status:

$ dws report status
Status for workspace: quickstart
Resources for workspace: quickstart
| Resource | Role | Type | Parameters ␣
→˓ |
|________________________|_____________|__________________|______________________________
→˓___|
| sklearn-digits-dataset | source-data | git | remote_origin_url=https://
→˓github.com/jfischer/sklearn-digits-dataset.git, |
| | | | relative_local_path=sklearn-
→˓digits-dataset, |
| | | | branch=master, ␣
→˓ |
| | | | read_only=True ␣
→˓ |
| code | code | git-subdirectory | relative_path=code ␣
→˓ |
| results | results | git-subdirectory | relative_path=results ␣
→˓ |
No resources for the following roles: intermediate-data.

Now, we can create a Jupyter notebook for running our experiments:

cd ./code
jupyter notebook

This will bring up the Jupyter app in your brower. Click on the New dropdown (on the right side) and select “Python
3”. Once in the notebook, click on the current title (“Untitled”, at the top, next to “Jupyter”) and change the title to
digits-svc.

Now, type the following Python code in the first cell:
2 In Git, each remote copy of a repository is assigned a name. By convention, the origin is the copy from which the local copy was cloned.

2 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from dataworkspaces.kits.scikit_learn import LineagePredictor, load_dataset_from_resource

load the data from filesystem into a "Bunch"
dataset = load_dataset_from_resource('sklearn-digits-dataset')

Instantiate a support vector classifier and wrap it for dws
classifier = LineagePredictor(SVC(gamma=0.001),

'multiclass_classification',
input_resource=dataset.resource,
model_save_file='digits.joblib')

split the training and test data
X_train, X_test, y_train, y_test = train_test_split(

dataset.data, dataset.target, test_size=0.5, shuffle=False)

train and score the classifier
classifier.fit(X_train, y_train)
classifier.score(X_test, y_test)

This code is the same as you would write for scikit-learn without dws, except that:

1. we load the dataset from a resource rather than call the lower-level NumPy fuctions (although you can call those
if you prefer), and

2. we wrap the support vector classifier instance with a LineagePredictor.

It will take a second to train and run the classifier. In the output of the cell, you should then see:

Wrote results to results:results.json

0.9688542825361512

Now, you can save and shut down your notebook. If you look at the directory quickstart/results, you should see
a saved model file, digits.joblib, and a results file, results.json, file with information about your run. We can
format and view the results file with the command dws report results:

$ dws report results
Results file at results:/results.json

General Properties
Key	Value
________________________	____________________________
step	digits-svc
start_time	2020-01-14T12:54:00.473892
execution_time_seconds	0.13
run_description	None

Parameters
Key	Value
_________________________	_______
C	1.0
cache_size	200

(continues on next page)

1.1. 1. Introduction 3

Data Workspaces Documentation, Release 1.5.2

(continued from previous page)

class_weight	None
coef0	0.0
decision_function_shape	ovr
degree	3
gamma	0.001
kernel	rbf
max_iter	-1
probability	False
random_state	None
shrinking	True
tol	0.001
verbose	False

Metrics
Key	Value
__________	_______
accuracy	0.969

Metrics: classification_report
| Key | Value ␣
→˓ |
|______________|___
→˓______________________________|
| 0.0 | precision: 1.0, recall: 0.9886363636363636, f1-score: 0.
→˓9942857142857142, support: 88 |
| 1.0 | precision: 0.9887640449438202, recall: 0.967032967032967, f1-score: 0.
→˓9777777777777779, support: 91 |
| 2.0 | precision: 0.9883720930232558, recall: 0.9883720930232558, f1-score: 0.
→˓9883720930232558, support: 86 |
| 3.0 | precision: 0.9753086419753086, recall: 0.8681318681318682, f1-score: 0.
→˓9186046511627908, support: 91 |
| 4.0 | precision: 0.9887640449438202, recall: 0.9565217391304348, f1-score: 0.
→˓9723756906077348, support: 92 |
| 5.0 | precision: 0.946236559139785, recall: 0.967032967032967, f1-score: 0.
→˓9565217391304348, support: 91 |
| 6.0 | precision: 0.989010989010989, recall: 0.989010989010989, f1-score: 0.
→˓989010989010989, support: 91 |
| 7.0 | precision: 0.9565217391304348, recall: 0.9887640449438202, f1-score: 0.
→˓9723756906077348, support: 89 |
| 8.0 | precision: 0.9361702127659575, recall: 1.0, f1-score: 0.967032967032967,
→˓ support: 88 |
| 9.0 | precision: 0.9278350515463918, recall: 0.9782608695652174, f1-score: 0.
→˓9523809523809524, support: 92 |
| micro avg | precision: 0.9688542825361512, recall: 0.9688542825361512, f1-score: 0.
→˓9688542825361512, support: 899 |
| macro avg | precision: 0.9696983376479764, recall: 0.9691763901507882, f1-score: 0.
→˓9688738265020351, support: 899 |
| weighted avg | precision: 0.9696092010839529, recall: 0.9688542825361512, f1-score: 0.
→˓9686644837258652, support: 899 |

Next, let us take a snapshot, which will record the state of the workspace and save the data lineage along with our
results:

4 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

dws snapshot -m "first run with SVC" SVC-1

SVC-1 is the tag of our snapshot. If you look in quickstart/results, you will see that the results (currently just
results.json) have been moved to the subdirectory snapshots/HOSTNAME-SVC-1, where HOSTNAME is the host-
name for your local machine). A file, lineage.json, containing a full data lineage graph for our experiment has also
been created in that directory.

We can see the history of snapshots with the command dws report history:

$ dws report history

History of snapshots
| Hash | Tags | Created | accuracy | classification_report | Message␣
→˓ |
|_________|_______|_____________________|__________|___________________________|_________
→˓___________|
| f1401a8 | SVC-1 | 2020-01-14T13:00:39 | 0.969 | {'0.0': {'precision': 1.. | first␣
→˓run with SVC |
1 snapshots total

We can also see the lineage for this snapshot with the command dws report lineage --snapshot SVC-1:

$ dws report lineage --snapshot SVC-1
Lineage for SVC-1
| Resource | Type | Details |␣
→˓Inputs |
|________________________|_____________|__|______
→˓__________________________________|
| results | Step | digits-svc at 2020-01-14 12:54:00.473892 |␣
→˓sklearn-digits-dataset (Hash:635b7182) |
| sklearn-digits-dataset | Source Data | Hash:635b7182 | None␣
→˓ |

This report shows us that the results resource was writen by the digits-svc step, which had as its input the resource
sklearn-digits-dataset. We also know the specific version of this resource (hash 635b71820) and that it is source data,
not written by another step.

Some things you can do from here:

• Run more experiments and save their results by snapshotting the workspace. If, at some point, we want to go
back to our first experiment, we can run: dws restore SVC-1. This will restore the state of the source data
and code subdirectories, but leave the full history of the results.

• Upload your workspace on GitHub or an any other Git hosting application. This can be to have a backup copy
or to share with others. Others can download it via dws clone.

• More complex scenarios involving multi-step data pipelines can easily be automated. See the documentation for
details.

See the Tutorial Section for a continuation of this example.

1.1. 1. Introduction 5

Data Workspaces Documentation, Release 1.5.2

1.1.2 Installation

Now, let us look into more detail at the options for installation.

Prerequisites

This software runs directly on Linux and MacOSx. Windows is supported by via the Windows Subsystem for Linux.
The following software should be pre-installed:

• git

• Python 3.6 or later

• Optionally, the rclone utility, if you are going to be using it to sync with a remote copy of your data.

Installation from the Python Package Index (PyPi)

This is the easiest way to install Data Workspaces is via the Python Package Index at http://pypi.org.

We recommend first creating a virtual environment to contain the Data Workspaces software and any other software
needed for your project. Using the standard Python 3 distribution, you can create and activate a virtual environment
via:

python3 -m venv VIRTUAL_ENVIRONMENT_PATH
source VIRTUAL_ENVIRONMENT_PATH/bin/activate

If you are using the Anaconda distribution of Python 3, you can create and activate a virtual environment via:

conda create --name VIRTUAL_ENVIRONMENT_NAME
conda activate VIRTUAL_ENVIRONMENT_NAME

Now that you have your virtual environment set up, we can install the actual library:

pip install dataworkspaces

To verify that it was installed correctly, run:

dws --help

Extra Dependencies

To keep the default Data Workspaces install small, some optional dependencies have been left out. If you plan to use
the S3 resource, you can install the associated dependencies via the s3 extra option to the package:

pip install dataworkspaces[s3]

If you plan to use the dws deploy subcommand to create a Docker container from your workspace, then install with
the docker extra as follows:

pip install dataworkspaces[docker]

You can install both extras as well:

pip install dataworkspaces[s3,docker]

6 Chapter 1. Data management for reproducability and collaboration

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://rclone.org
http://pypi.org
https://docs.python.org/3/library/venv.html#venv-def
https://www.anaconda.com/distribution/

Data Workspaces Documentation, Release 1.5.2

Finally, if you have already installed the base dataworkspaces package, you can add the extras by running pip with
the --upgrade option:

pip install --upgrade dataworkspaces[s3,docker]

Installation via the source tree

You can clone the source tree and install it as follows:

git clone git@github.com:data-workspaces/data-workspaces-core.git
cd data-workspaces-python
pip install `pwd`
dws --help # just a sanity check that it was installed correctly

1.1.3 Concepts

Data Workspaces provides a thin layer of the Git version control system for easy management of source data, interme-
diate data, and results for data science projects. A workspace is a Git repository with some added metadata to track
external resources and experiment history. You can create and manipulate workspaces via dws, a command line tool.
There is also a programmatic API for integrating more tightly with your data pipeline.

A workspace contains one or more resources. Each resource represents a collection of data that has a particular role
in the project – source data, intermediate data (generated by processing the original source data), code, and results.
Resources can be subdirectories in the workspace’s Git repository, separate git repositories, local directories, or remote
systems (e.g. an S3 bucket or a remote server’s files accessed via ssh).

Once the assets of a data science project have been organized into resources, one can do the work of developing the
associated software and running experiments. At any point in time, you can take a snapshot, which captures the current
state of all the resources referenced by the workspace. If you want to go back to a prior state of the workspace or even
an individual resource, you can restore back to any prior snapshot.

Results resources are handled a little differently than other types: they are always additive. Each snapshot of a results
resource takes the current files in the resource and moves it to a snapshot-specific subdirectory. This lets you view and
compare the results of all your prior experiments.

You interact with your data workspace through the dws command line tool, which like Git, has various subcommands
for the actions you might take (e.g. creating a new snapshot, syncing with a remote repository, etc.).

Beyond the basic versioning of your project through snapshots, you can use the Lineage API to track each step of your
workflow, including inputs/outputs, parameters, and metrics (accuracy, loss, precision, recall, roc, etc.). This lineage
data is saved with your snapshots so you can understand how you arrived at each of your results.

1.1.4 Commmand Line Interface

To run the command line interface, you use the dws command, which should have been installed into your environment
by pip install. dws operations have the form:

dws [GLOBAL_OPTIONS] COMMAND [COMMAND_OPTIONS] [COMMAND_ARGS]

Just run dws --help for a list of global options and commands.

1.1. 1. Introduction 7

Data Workspaces Documentation, Release 1.5.2

Commands

Here is a summary of the key commands:

• init - initialize a new workspace in the current directory

• add - add a resource (a git repo, a directory, an s3 bucket, etc.) to the current workspace

• snapshot - take a snapshot of the current state of the workspace

• restore - restore the state to a prior snapshot

• publish - associate a workspace with a remote git repository (e.g. on GitHub)

• push - push a workspace and all resources to their (remote) origins

• pull - pull the workspace and all resources from their (remote) origins

• clone - clone a workspace and all the associated resources to the local machine

• report - various reports about the workspace

• run - run a command and capture the lineage. This information is saved in a file for future calls to the same
command. (not yet implemented)

See the Command Reference section for a full description of all commands and their options.

Workflow

To put these commands in context, here is a typical workflow for the initial data scientist on a project:

The person starting the project creates a new workspace on their local machine using the init command. Next, they
need to tell the data workspace about their code, data sets, and places where they will store intermediate data and
results. If subdirectories of the main workspace are sufficient, they can do this as a part of the init command, using
the --create-resources option. Otherwise, they use the add command to define each resource associated with their
project.

The data scientist can now run their experiements. This is typically an iterative process, represented in the picture by
the dashed box labeled “Experiment Workflow”. Once they have finished a complete experiment, then can use the
snapshot command to capture the state of their workspace. They can go back and run further experiments, taking a
snapshot each time they have something interesting. They can also go back to a prior state using the restore command.

8 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

Collaboration

At some point, the data scientist will want to copy their project to a remote service for sharing (and backup). Data
Workspaces can use any Git hosting service for this (e.g. GitHub, GitLab, or BitBucket) and does not need any special
setup. Here is an overview of collaborations facilitated by Data Workspaces:

First, the data scientist creates an empty git repository on the remote origin (e.g. GitHub, GitLab, or BitBucket) and
then runs the publish command to associate the origin with the workspace and update the origin with the full
history of the workspace.

A new collaborator can use the clone command to copy the workspace down to their local machine. They can then
run experiments and take snapshots, just like the original data scientisst. When readly, then can upload their changes
to the via the push command. Others can then use the pull command to download these changes to their workspace.
This process can be repeated as many times as necessary, and multiple collaborators can overlap their work.

1.1.5 Sharing lineage across workspaces

In some more complex scenarios, it makes sense to split a data pipeline across multiple workspaces. For example, an
intial sequence of steps may generate data used across multiple downstream pipelines. As shown in the picture below,
the initial pipeline can be its own self contained workspace. The intermediate data to be used downstream is then an
exported resource. Such resources save their lineage in the resource itself, in a file named lineage.json.

1.1. 1. Introduction 9

Data Workspaces Documentation, Release 1.5.2

The downstream pipelines can then be separate workspaces that import the resource. This causes the lineage graph of
the imported resource to be included in the lineage graph of the importing workspace. Thus, end to end lineage is still
captured, even across workspaces.

For more details, see the command reference, specifically the -export and --import options of the dws add
[resource_type] subcommands.

1.2 2. Tutorial

Let’s build on the Quick Start. If you haven’t already, run through it so that you have a quickstart workspace with
one tag (SVC-1).

1.2.1 Further Experiments

Now, let’s try to use Logistic Regression. Create a new Jupyter notebook called digits-lr in the code subdirectory
of quickstart. Enter the following code into a notebook cell:

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import train_test_split
from dataworkspaces.kits.scikit_learn import LineagePredictor, load_dataset_from_resource

load the data from filesystem into a "Bunch"
dataset = load_dataset_from_resource('sklearn-digits-dataset')

split the training and test data
X_train, X_test, y_train, y_test = train_test_split(

dataset.data, dataset.target, test_size=0.5, shuffle=False)

Run the a grid search to find the best parameters
(continues on next page)

10 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

(continued from previous page)

gs_params={'C':[1e-3, 1e-2, 1e-1, 1, 1e2], 'solver':['lbfgs'],
'multi_class':['multinomial']}

cv = GridSearchCV(LogisticRegression(), gs_params, cv=5, scoring='accuracy')
cv.fit(X_train, y_train)

Instantiate a LogisticRegression classifier with the best parameters
and wrap it for dws
classifier = LineagePredictor(LogisticRegression(**cv.best_params_),

'multiclass_classification',
input_resource=dataset.resource,
model_save_file='digits.joblib')

train and score the classifier
classifier.fit(X_train, y_train)
classifier.score(X_test, y_test)

There are two differences from our previous notebook:

1. we use a LogisticRegression classifier rather than a Support Vector classifier, and

2. Before calling our wrapped classifier, we run a grid search to find the best combination of model parameters.

If you run this cell, you should see several no-convergence warnings (some of the values for C must be bad for this data
set) and then a final accuracy result, around 94%

Ok, so our Logistic Regression accuracy of 0.94 is not as good as we obtained from the Support Vector Classifier
(0.97). Let’s take a snapshot anyway, so we have this experiment for future reference. Maybe someone will ask us,
“Did you try Logistic Regession?”, and we can show them the full results and even use a restore command to re-run
the experiment for them. Here’s how to take the snapshot:

dws snapshot -m "Logistic Regession experiment" LR-1

We can see both snapshots with the command dws report history:

$ dws report history

History of snapshots
| Hash | Tags | Created | accuracy | classification_report | Message␣
→˓ |
|_________|_______|_____________________|__________|___________________________|_________
→˓______________________|
| bf9fb37 | LR-1 | 2020-01-14T14:27:37 | 0.94 | {'0.0': {'precision': 0.. |␣
→˓Logistic Regession experiment |
| f1401a8 | SVC-1 | 2020-01-14T13:00:39 | 0.969 | {'0.0': {'precision': 1.. | first␣
→˓run with SVC |
2 snapshots total

1.2. 2. Tutorial 11

Data Workspaces Documentation, Release 1.5.2

1.2.2 Publishing a workspace

Now, we will publish our workspace on GitHub. A similar approach can be taken for other code hosting services like
BitBucket or GitLab.

The first few steps are GitHub-specific, but the dws commands will work across all hosting services.

First, create an account on GitHub if you do not already have one. Next, go to your front page on GitHub and click on
the green new repository button on the left side of the page:

You should now get a dialog like this:

12 Chapter 1. Data management for reproducability and collaboration

https://github.com

Data Workspaces Documentation, Release 1.5.2

Fill in a name for your repository (in this case, dws-tutorial) and select whether you want it to be public (visible to
the work) or private (only visible to those you explicitly grant access). You won’t need a README file, .gitignore, or
license file, as we will be initializing the repository from your local copy. Go ahead and click on the “Create Repository”
button.

Now, back on the command line, go to the directory containing the quickstart workspace on your local machine.
Run the following command replacing YOUR_USERNAME with your GitHub username:

dws publish git@github.com:YOUR_USERNAME/dws-tutorial.git

You have published your workspace and its history to a GitHub Repository.

At this point, if you refresh the page for this repository on GitHub, you should see something like this:

1.2. 2. Tutorial 13

Data Workspaces Documentation, Release 1.5.2

You have successfully published your workspace!

1.2.3 Cloning a workspace

Now, we want to use this workspace on a new machine (perhaps your own or perhaps belonging to a collaborator).
First, make certain that the account on the second machine has at least read access to the repository. If you will be
pushing updates from this account, it will also need write access to the repo. Next, make sure that your software
dependencies are installed (e.g. Jupyter, NumPy, and Scikit-learn) and then install the Data Workspaces library into
your local environment:

pip install dataworkspaces

From a browser on your second machine, go back to the GitHub page for your repository and click on the “Clone or
download” button. It should show you a URL for cloning via SSH. Click on the clipboard icon to the right of the URL
to copy the URL to your machine’s clipboard:

Then, on your second machine, go to the directory you intend to be the parent of th workspace (in this case ~/
workspaces) and run the following:

dws clone GITHUB_CLONE_URL

where GITHUB_CLONE_URL is the URL you copied to your clipboard.

14 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

It should ask you for the hostname you want to use to identify this machine. It defaults to the system hostname.

By default, the clone will be in the directory ./quickstart, since “quickstart” was the name of the original repo. You
can change this by adding the desired local directory name to the command line.

We can now change to the workspace’s directory and run the history command:

$ cd ./quickstart
$ dws report history
History of snapshots
| Hash | Tags | Created | accuracy | classification_report | Message␣
→˓ |
|_________|_______|_____________________|__________|___________________________|_________
→˓______________________|
| bf9fb37 | LR-1 | 2020-01-14T14:27:37 | 0.94 | {'0.0': {'precision': 0.. |␣
→˓Logistic Regession experiment |
| f1401a8 | SVC-1 | 2020-01-14T13:00:39 | 0.969 | {'0.0': {'precision': 1.. | first␣
→˓run with SVC |
2 snapshots total

We see the full history from the original workspace!

1.2.4 Sharing updates

Let’s re-run the Support Vector classifier evaluation on the second machine and see if we reproduce our results. First,
go to the code subdirectory in your workspace. Start the Jupyter notebook as follows:

jupyter notebook digits-svc.ipynb

This should bring up a browser with the notebook. You should see the code from our first experiment. Run the cell.
You should get close the same results as on the first machine (0.97 accuracy). Save and shutdown the notebook.

Now, take a snapshot:

dws snapshot -m "reproduce on second machine" SVC-2

We have tagged this snapshot with the tag SVC-2. We want to push the entire workspace to GitHub. This can be done
as follows:

dws push

After the push, the origin respository on GitHub has been updated with the latest snapshot and results. We can now go
back to the origin machine where we created the workspace, and download the changes. To do so, start up a command
line window, go into the workspace’s directory on the first machine, and run:

dws pull

After the pull, we should see the experiment we ran on the second machine:

$ dws report history
History of snapshots
| Hash | Tags | Created | accuracy | classification_report | Message␣
→˓ |
|_________|_______|_____________________|__________|___________________________|_________
→˓______________________|

(continues on next page)

1.2. 2. Tutorial 15

Data Workspaces Documentation, Release 1.5.2

(continued from previous page)

| 2c195ba | SVC-2 | 2020-01-14T15:20:23 | 0.969 | {'0.0': {'precision': 1.. |␣
→˓reproduce on second machine |
| bf9fb37 | LR-1 | 2020-01-14T14:27:37 | 0.94 | {'0.0': {'precision': 0.. |␣
→˓Logistic Regession experiment |
| f1401a8 | SVC-1 | 2020-01-14T13:00:39 | 0.969 | {'0.0': {'precision': 1.. | first␣
→˓run with SVC |
3 snapshots total

1.3 3. Command Reference

In this section, we describe the full command line interface for Data Workspaces. This interface is built around a script
dws, which is installed into your path when you install the dataworkspaces package. The overall interface for dws is:

dws [--batch] [--verbose] [--help] COMMAND [--help] [OPTIONS] [ARGS]...

dws has three options common to all commands:

• --batch, which runs the command in a mode that never asks for user confirmation and will error out if it
absolutely requires an input (useful for automation),

• --verbose, which will print a lot of detail about what will be and has been done for a command (useful for
debugging), and

• --help, which prints these common options and a list of available commands.

Next on your command line comes the command name (e.g. init, clone, snapshot). Each command has its own
arguments and options, as documented below. All commands take a --help argument, which will print the specific
options and arguments for the command. Finally, the add subcommand has further subcommands, representing the
individual resource types (e.g. git, local-files, rclone).

1.3.1 dws

dws [OPTIONS] COMMAND [ARGS]...

Options

-b, --batch
Run in batch mode, never ask for user inputs.

--verbose
Print extra debugging information and ask for confirmation before running actions.

16 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

add

Add a data collection to the workspace as a resource. Possible types of resources are git, local-files, or rclone;
these are subcommands of add.

dws add [OPTIONS] COMMAND [ARGS]...

Options

--workspace-dir <workspace_dir>

api-resource

Resource to represent data obtained via an API. Use this when there is no file-based representation of your data that
can be versioned and captured more directly. Subcommand of add

dws add api-resource [OPTIONS]

Options

--role <role>

--name <name>
Short name for this resource

git

Add a local git repository as a resource. Subcommand of add

dws add git [OPTIONS] PATH

Options

--role <role>

--name <name>
Short name for this resource

--branch <branch>
Branch of the repo to use. If not specified, defaults to the current branch.

-r, --read-only
If specified, treat the origin repository as read-only and never push to it.

-e, --export
On snapshots, export lineage data for import into other workspaces

--imported
This resource was exported from another workspace. Import the lineage data. An imported resource implies
–read-only and –role=source-data.

1.3. 3. Command Reference 17

Data Workspaces Documentation, Release 1.5.2

Arguments

PATH
Required argument

local-files

Add a local file directory (not managed by git) to the workspace. Subcommand of add

dws add local-files [OPTIONS] PATH

Options

--role <role>

--name <name>
Short name for this resource

--compute-hash
Compute hashes for all files. If this option is not set, we use a lightweight comparison of file sizes only.

-e, --export
On snapshots, export lineage data for import into other workspaces

--imported
This resource was exported from another workspace. Import the lineage data. An imported resource implies
–read-only and –role=source-data.

Arguments

PATH
Required argument

rclone

Add an rclone-d repository as a resource to the workspace. Subcommand of add. This is designed for uni-directional
synchronization between a remote and a local_path. The remote has the form remote_name:remote_path, where re-
mote_name is an entry in your rclone config file.

dws add rclone [OPTIONS] REMOTE LOCAL_PATH

Options

--role <role>

--name <name>
Short name for this resource

--config <config>
Configuration file for rclone

--compute-hash
Compute hashes for all files

18 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

-e, --export
On snapshots, export lineage data for import into other workspaces

--imported
This resource was exported from another workspace. Import the lineage data. An imported resource implies
–read-only and –role=source-data.

--master <master>
Determines which system is the master. If ‘remote’, then pulls will be done, but not pushes. If ‘local’, then
pushes will be done, but not pulls. If ‘none’ (the default), no action will be taken for pushes and pulls (you need
to synchronize manually using rclone). When first adding the resource or cloning to a new machine, if the local
directory does not exist, and ‘remote’ or ‘none’ were specified, the contents of the remote will copied down to
the local directory.

Options none | remote | local

--sync-mode <sync_mode>
When copying between local and master, which rclone command to use. If you specify ‘copy’, files are added or
overwritten without deleting any files present at the target. If you specify ‘sync’, files at the target are removed
if they are not present at the source. The default is ‘copy’. If master is ‘none’, this option has no effect.

Options copy | sync

--size-only
If specified, use only the file size (rather than also modification time and checksum) to determine if a file has
been changed. If your resource has a lot of files and access to the remote is over a WAN, you probably want to
set this. Otherwise, syncs/copies can be VERY slow.

Arguments

REMOTE
Required argument

LOCAL_PATH
Required argument

s3

Add a S3 resource to the workspace. Subcommand of add

dws add s3 [OPTIONS] BUCKET_NAME

Options

--role <role>

--name <name>
Short name for this resource

1.3. 3. Command Reference 19

Data Workspaces Documentation, Release 1.5.2

Arguments

BUCKET_NAME
Required argument

clone

Clone the specified data workspace.

dws clone [OPTIONS] REPOSITORY [DIRECTORY]

Options

--hostname <hostname>
Hostname to identify this machine in snapshot directory paths, defaults to build-16353676-project-382008-data-
workspaces-core

Arguments

REPOSITORY
Required argument

DIRECTORY
Optional argument

config

Get or set configuration parameters. Local parameters are only for this copy of the workspace, while global parameters
are stored centrally and affect all copies.

If neither PARAMETER_NAME nor PARAMETER_VALUE are specified, this command prints a table of all param-
eters and their information (scope, value, default or not, and help text). If just PARAMETER_NAME is specified, it
prints the specified parameter’s information. Finally, if both the parameter name and value are specified, the parameter
is set to the specified value.

dws config [OPTIONS] [PARAMETER_NAME] [PARAMETER_VALUE]

Options

--workspace-dir <workspace_dir>

--resource <resource>
If specified, get/set parameters for the specified resource, rather than the workspace.

20 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

Arguments

[PARAMETER_NAME]
Optional argument

[PARAMETER_VALUE]
Optional argument

delete-snapshot

Delete the specified snapshot. This includes the metadata and lineage data for the snapshot. Unless –no-include-
resources is specified, this also deletes any results data saved for the snapshot (under the snapshots subdirectory of a
results resource).

dws delete-snapshot [OPTIONS] TAG_OR_HASH

Options

--workspace-dir <workspace_dir>

--no-include-resources
If specified, do NOT include deleting an snapshot-specific content from resources.

Arguments

TAG_OR_HASH
Required argument

deploy

Lineage-related commands

dws deploy [OPTIONS] COMMAND [ARGS]...

Options

--workspace-dir <workspace_dir>

build

Build a docker image containing this workspace. This command is EXERIMENTAL and subject to change.

dws deploy build [OPTIONS]

1.3. 3. Command Reference 21

Data Workspaces Documentation, Release 1.5.2

Options

--image-name <image_name>
Name of docker image, defaults to name of workspace

-f, --force-rebuild
If specified, always rebuild image (force deletes the image from docker)

--git-user-email <git_user_email>
Email address used by git inside the container. Defaults to value of user.email for this workspace.

--git-user-name <git_user_name>
Username used by git inside the container. Defualts to value of user.name for this workspace.

run

Build a docker image containing this workspace. This command is EXERIMENTAL and subject to change.

dws deploy run [OPTIONS]

Options

--image-name <image_name>
Name of docker image, defaults to name of workspace

--no-mount-ssh-keys
If specified, do not mount the host’s ~/.ssh directory into the container. This directory is need for git authentica-
tion.

diff

List differences between two snapshots

dws diff [OPTIONS] SNAPSHOT_OR_TAG1 SNAPSHOT_OR_TAG2

Options

--workspace-dir <workspace_dir>

Arguments

SNAPSHOT_OR_TAG1
Required argument

SNAPSHOT_OR_TAG2
Required argument

22 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

init

Initialize a new workspace

dws init [OPTIONS] [NAME]

Options

--hostname <hostname>
Hostname to identify this machine in snapshot directory paths, defaults to the result of the ‘hostname’ command.

--create-resources <create_resources>
Initialize the workspace with subdirectories for the specified resource roles. Choices are ‘all’ or any comma-
separated combination of source-data, intermediate-data, code, results.

--scratch-directory <scratch_directory>
Local scratch directory (defaults to WORKSPACE_DIR/scratch)

--git-fat-remote <git_fat_remote>
Initialize the workspace with the git-fat large file extension and use the specified URL for the remote datastore

--git-fat-user <git_fat_user>
Username for git fat remote (if not root)

--git-fat-port <git_fat_port>
Port number for git-fat remote (defaults to 22)

--git-fat-attributes <git_fat_attributes>
Comma-separated list of file patterns to manage under git-fat. For example –git-fat-attributes=’.gz,.zip’. If you
do not specify here, you can always add the .gitattributes file later.

--git-lfs-attributes <git_lfs_attributes>
Comma-separated list of file patterns to manage under git-lfs. For example –git-lfs-attributes=’.gz,.zip’. If you
do not specify here, you can always add the .gitattributes file later.

Arguments

NAME
Optional argument

lineage

Lineage-related commands

dws lineage [OPTIONS] COMMAND [ARGS]...

1.3. 3. Command Reference 23

Data Workspaces Documentation, Release 1.5.2

Options

--workspace-dir <workspace_dir>

graph

Graph the lineage of a resource, writing the graph to an HTML file. Subcommand of lineage

dws lineage graph [OPTIONS] OUTPUT_FILE

Options

--resource <resource>
name of the resource to graph the lineage for (default to the first results resource)

--snapshot <snapshot>
Snapshot hash or tag to use for lineage. If not specified, use current lineage.

--format <format>
Format of the output graph (defaults to html)

Options html | dot

--width <width>
Width of graph in pixels (defaults to 1024)

--height <height>
Height of graph in pixels (defaults to 800)

Arguments

OUTPUT_FILE
Required argument

publish

Add a remote Git repository as the origin for the workspace and do the initial push of the workspace and any other
resources.

dws publish [OPTIONS] REMOTE_REPOSITORY

Options

--workspace-dir <workspace_dir>

--skip <RESOURCE1[,RESOURCE2,...>
Comma-separated list of resource names that you wish to skip when pushing. The rest will be pushed to their
remote origins, if applicable.

24 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

Arguments

REMOTE_REPOSITORY
Required argument

pull

Pull the latest state of the workspace and its resources from their origins.

dws pull [OPTIONS]

Options

--workspace-dir <workspace_dir>

--only <RESOURCE1[,RESOURCE2,...>
Comma-separated list of resource names that you wish to pull from the origin, if applicable. The rest will be
skipped.

--skip <RESOURCE1[,RESOURCE2,...>
Comma-separated list of resource names that you wish to skip when pulling. The rest will be pulled from their
remote origins, if applicable.

--only-workspace
Only pull the workspace’s metadata, skipping the individual resources

push

Push the state of the workspace and its resources to their origins.

dws push [OPTIONS]

Options

--workspace-dir <workspace_dir>

--only <RESOURCE1[,RESOURCE2,...>
Comma-separated list of resource names that you wish to push to the origin, if applicable. The rest will be
skipped.

--skip <RESOURCE1[,RESOURCE2,...>
Comma-separated list of resource names that you wish to skip when pushing. The rest will be pushed to their
remote origins, if applicable.

--only-workspace
Only push the workspace’s metadata, skipping the individual resources

1.3. 3. Command Reference 25

Data Workspaces Documentation, Release 1.5.2

report

Report generation commands

dws report [OPTIONS] COMMAND [ARGS]...

Options

--workspace-dir <workspace_dir>

history

Show the history of snapshots. Subcommand of report.

dws report history [OPTIONS]

Options

--limit <limit>
Number of previous snapshots to show (most recent first)

lineage

Show a lineage table for either the current workspace or a specific snapshot. Subcommand of report.

dws report lineage [OPTIONS]

Options

--snapshot <snapshot>
Optional tag or hash for a snapshot. Otherwise, shows the current status.

results

Show the contents of a results file. Subcommand of report.

dws report results [OPTIONS]

26 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

Options

--snapshot <snapshot>
Optional tag or hash for a snapshot. Otherwise, shows the current status.

--resource <resource>
Optional resource name. Otherwise, will look for first resource with a results file.

status

Show the status of resources in this workspace. Subcommand of report.

dws report status [OPTIONS]

restore

Restore the workspace to a prior state

dws restore [OPTIONS] TAG_OR_HASH

Options

--workspace-dir <workspace_dir>

--only <RESOURCE1[,RESOURCE2,...>
Comma-separated list of resource names that you wish to revert to the specified snapshot. The rest will be left
as-is.

--leave <RESOURCE1[,RESOURCE2,...>
Comma-separated list of resource names that you wish to leave in their current state. The rest will be restored to
the specified snapshot.

--strict
If specified, error out if unable to restore any of the requested resources (due to lack of a restore hash or removing
the resource from workspace).

Arguments

TAG_OR_HASH
Required argument

snapshot

Take a snapshot of the current workspace’s state

dws snapshot [OPTIONS] [TAG]

1.3. 3. Command Reference 27

Data Workspaces Documentation, Release 1.5.2

Options

--workspace-dir <workspace_dir>

-m, --message <message>
Message describing the snapshot

Arguments

TAG
Optional argument

status

NOTE: this command is DEPRECATED. Please use dws report status and dws report history instead.

dws status [OPTIONS]

Options

--workspace-dir <workspace_dir>

--history
Show previous snapshots

--limit <limit>
Number of previous snapshots to show (most recent first)

version

Print the version of Data Workspaces and exit.

dws version [OPTIONS]

1.4 4. Lineage API

The Lineage API is provided by the module dataworkspaces.lineage.

This module provides an API for tracking data lineage – the history of how a given result was created, including the
versions of original source data and the various steps run in the data pipeline to produce the final result.

The basic idea is that your workflow is a sequence of pipeline steps:

---------- ---------- ---------- ----------
Step 1	---->	Step 2	---->	Step 3	---->	Step 4
---------- ---------- ---------- ----------

28 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

A step could be a command line script, a Jupyter notebook or perhaps a step in an automated workflow tool (e.g.
Apache Airflow). Each step takes a number of inputs and parameters and generates outputs. The inputs are resources
in your workspace (or subpaths within a resource) from which the step will read to perform its task. The parameters are
configuration values passed to the step (e.g. the command line arguments of a script). The outputs are the resources (or
subpaths within a resource), which are written to by the step. The outputs may represent results or intermediate data
to be consumed by downstream steps.

The lineage API captures this data for each step. Here is a view of the data captured:

Parameters
|| || ||
\/ \/ \/

=>| |=>
Input resources =>| Step i |=> Output resources

=>| |=>

/\
||

Code
Dependencies

To do this, we need use the following classes:

• ResourceRef - A reference to a resource for use as a step input or output. A ResourceRef contains a resource
name and an optional path within that resource. This lets you manage lineage down to the directory or even file
level. The APIs also support specifying a path on the local filesystem instead of a ResourceRef. This path is
automatically resolved to a ResourceRef (it must map to the a location under the local path of a resource). By
storing :class:`~ResourceRef`s instead of hard-coded filesystem paths, we can include non-local resources (like
an S3 bucket) and ensure that the workspace is easily deployed on a new machine.

• Lineage - The main lineage object, instantiated at the start of your step. At the beginning of your step, you
specify the inputs, parameters, and outputs. At the end of the step, the data is saved, along with any results you
might have from that step. Lineage instances are context managers, which means you can use a with statement
to manage their lifecycle.

• LineageBuilder - This is a helper class to guide the creation of your lineage object.

Example
Here is an example usage of the lineage API in a command line script:

import argparse
from dataworkspaces.lineage import LineageBuilder

def main():
...
parser = argparse.ArgumentParser()
parser.add_argument('--gamma', type=float, default=0.01,

help="Regularization parameter")
parser.add_argument('input_data_dir', metavar='INPUT_DATA_DIR', type=str,

help='Path to input data')
parser.add_argument('results_dir', metavar='RESULTS_DIR', type=str,

help='Path to where results should be stored')
args = parser.parse_args()
...
Create a LineageBuilder instance to specify the details of the step

(continues on next page)

1.4. 4. Lineage API 29

https://docs.python.org/3/reference/datamodel.html#context-managers

Data Workspaces Documentation, Release 1.5.2

(continued from previous page)

to the lineage API.
builder = LineageBuilder()\

.as_script_step()\

.with_parameters({'gamma':args.gamma})\

.with_input_path(args.input_data_dir)\

.as_results_step(args.results_dir)

builder.eval() will construct the lineage object. We call it within a
with statement to get automatic save/cleanup when we leave the
with block.
with builder.eval() as lineage:

... do your work here ...

all done, write the results
lineage.write_results({'accuracy':accuracy,

'precision':precision,
'recall':recall,
'roc_auc':roc_auc})

When leaving the with block, the lineage is automatically saved to the
workspace. If an exception is thrown, the lineage is not saved, but the
outputs are marked as being in an unknown state.

return 0

boilerplate to call our main function if this is called as a script.
if __name__ == '__main__:

sys.exit(main())

1.4.1 Classes

class dataworkspaces.lineage.ResourceRef(name: str, subpath: Optional[str] = None)
A namedtuple that is used to identify an input or output of a step. The name parameter is the name of a resource.
The optional subpath parameter is a relative path within that resource. The subpath lets you store inputs/outputs
from multiple steps within the same resource and track them independently.

class dataworkspaces.lineage.Lineage
This is the main object for tracking the execution of a step. Rather than instantiating it directly, use the
LineageBuilder class to construct your Lineage instance.

abort()
The step has failed, so we mark its outputs in an unknown state. If you create the lineage via a “with”
statement, then this will be called for you automatically.

add_output_path(path: str)→ None
Resolve the path to a resource name and subpath. Add that to the lineage as an output of the step. From
this point on, if the step fails (abort() is called), the associated resource and subpath will be marked as
being in an “unknown” state.

add_output_ref(ref: dataworkspaces.utils.lineage_utils.ResourceRef)
Add the resource reference to the lineage as an output of the step. From this point on, if the step fails
(abort() is called), the associated resource and subpath will be marked as being in an “unknown” state.

30 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

add_param(name: str, value)→ None
Add or update one of the step’s parameters.

complete()
The step has completed. Save the outputs. If you create the lineage via a “with” statement, then this will
be called for you automatically.

class dataworkspaces.lineage.ResultsLineage
Lineage for a results step. This subclass is returned by the LineageBuilder when as_results_step() is
called. This marks the Lineage object as generating results. It adds the write_results() method for writing
a JSON summary of the final results.

Results resources will also have a lineage.json file added when the next snapshot is taken. This file contains
the full lineage graph collected for the resource.

write_results(metrics: Dict[str, Any])
Write a results.json file to the results directory specified when creating the lineage object (e.g. via
as_results_step()). This json file contains information about the step execution (e.g. start time), pa-
rameters, and the provided metrics.

class dataworkspaces.lineage.LineageBuilder
Use this class to declaratively build Lineage objects. Instantiate a LineageBuilder instance, and call a sequence
of configuration methods to specify your inputs, parameters, your workspace (if the script is not already inside
the workspace), and whether this is a results step. Each configuration method returns the builder, so you can
chain them together. Finally, call eval() to instantiate the Lineage object.

Configuration Methods
To specify the workflow step’s name, call one of:

• as_script_step() - the script’s name will be used to infer the step and the associated code resource

• with_step_name - explicitly specify the step name

To specify the parameters of the step (e.g. command line arguments), use the with_parameters() method.

To specify the input of the step call one or more of:

• with_input_path() - resolve the local filesystem path to a resource and subpath and add it to the lineage
as inputs. May be called more than once.

• with_input_paths() - resolve a list of local filesystem paths to resources and subpaths and add them to
the lineage as inputs. May be called more than once.

• with_input_ref() - add the resource and subpath to the lineage as an input. May be called more than
once.

• with_no_inputs() - mutually exclusive with the other input methods. This signals that there are no inputs
to this step.

To specify code resource dependencies for the step, you can call with_code_ref(). For command-line Python
scripts, the main code resource is handled automatically in as_script_step(). Other subclasses of the Lin-
eageBuilder may provide similar functionality (e.g. the LineageBuilder for JupyterNotebooks will try to figure
out the resource containing your notebook and set it in the lineage).

If you need to specify the workspace’s root directory, use the with_workspace_directory() method. Other-
wise, the lineage API will attempt to infer the workspace directory by looking at the path of the script.

Call as_results_step() to indicate that this step is producing results. This will add a method
write_results() to the Lineage object returned by eval(). The method as_results_step() takes two
parameters: results_dir and, optionally, run_description. The results directory should correspond to either the
root directory of a results resource or a subdirectory within the resource. If you have multiple steps of your
workflow that produce results, you can create separate subdirectories for each results-producing step.

1.4. 4. Lineage API 31

Data Workspaces Documentation, Release 1.5.2

Example
Here is an example where we build a Lineage object for a script, that has one input, and that produces results:

lineage = LineageBuilder()\
.as_script_step()\
.with_parameters({'gamma':0.001})\
.with_input_path(args.intermediate_data)\
.as_results_step('../results').eval()

Methods
as_results_step(results_dir: str, run_description: Optional[str] = None)→

dataworkspaces.lineage.LineageBuilder

as_script_step()→ dataworkspaces.lineage.LineageBuilder

eval()→ dataworkspaces.lineage.Lineage
Validate the current configuration, making sure all required properties have been specified, and return a
Lineage object with the requested configuration.

with_code_path(path: str)→ dataworkspaces.lineage.LineageBuilder

with_code_ref(ref: dataworkspaces.utils.lineage_utils.ResourceRef)→
dataworkspaces.lineage.LineageBuilder

with_input_path(path: str)→ dataworkspaces.lineage.LineageBuilder

with_input_paths(paths: List[str])→ dataworkspaces.lineage.LineageBuilder

with_input_ref(ref: dataworkspaces.utils.lineage_utils.ResourceRef)→
dataworkspaces.lineage.LineageBuilder

with_no_inputs()→ dataworkspaces.lineage.LineageBuilder

with_parameters(parameters: Dict[str, Any])→ dataworkspaces.lineage.LineageBuilder

with_step_name(step_name: str)→ dataworkspaces.lineage.LineageBuilder

with_workspace_directory(workspace_dir: str)→ dataworkspaces.lineage.LineageBuilder

1.4.2 Using Lineage

Once you have instrumented the individual steps of your workflow, you can run the steps as normal. Lineage data is
stored in the directory .dataworkspace/current_lineage, but not checked into the associated Git repository.

When you take a snapshot, this lineage data is copied to .dataworkspace/snapshot_lineage/HASH, where HASH
is the hashcode associated with the snapshot, and checked into git. This data is available as a record of how you obtained
the results associated with the snapshot. In the future, more tools will be provided to analyze and operate on this lineage
(e.g. replaying workflows).

When you restore a snapshot, the lineage data assocociated with the snapshot is restored to .dataworkspace/
current_lineage.

32 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

Consistency

In order to fully track the status of your workflow, we make a few restrictions:

1. Independent steps should not overwrite the same ResourceRef or a ResourceRef where one ResourceRef refers
to the subdirectory of another ResourceRef.

2. A step’s execution should not transitively depend on two different versions of the same ResourceRef. If you try
to run a step in this situation, an exception will be thrown.

These restrictions should not impact reasonable workflows in practice. Furthermore, they help to catch some common
classes of errors (e.g. not rerunning all the dependent steps when a change is made to an input).

1.5 5. Kits Reference

In this section, we cover kits, integrations with various data science libraries and infrastructure provided by Data
Workspaces.

1.5.1 Jupyter

Integration with Jupyter notebooks. This module provides a LineageBuilder subclass to simplify Lineage for Note-
books.

It also provides a collection of IPython magics (macros) for working in Jupyter notebooks.

class dataworkspaces.kits.jupyter.NotebookLineageBuilder(results_dir: str, step_name: Optional[str]
= None, run_description: Optional[str] =
None)

Notebooks are the final step in a pipeline (and potentially the only step). We customize the standard lineage
builder to get the step name from the notebook’s name and to always have a results directory.

If you are not running this notebook in a server context (e.g. via nbconvert), the step name won’t be available.
In that case, you can explicitly pass in the step name to the constructor.

dataworkspaces.kits.jupyter.get_step_name_for_notebook()→ Optional[str]
Get the step name for a notebook by getting the path and then extracting the base name. In some situations (e.g.
running on the command line via nbconvert), the notebook name is not available. We return None in those cases.

dataworkspaces.kits.jupyter.is_notebook()→ bool
Return true if this code is running in a notebook.

Magics

This module also provides a collection of IPython magics (macros) to simplify interactions with your data workspace
when develping in a Jupyter Notebook.

1.5. 5. Kits Reference 33

https://ipython.readthedocs.io/en/stable/interactive/magics.html

Data Workspaces Documentation, Release 1.5.2

Limitations

Currently these magics are only supported in interactive Jupyter Notebooks. They do not run properly within JupyterLab
(we are currently working on an extension specific to JupyterLab), the nbconvert command, or if you run the entire
notebook with “Run All Cells”.

To develop a notebook interactively using the DWS magic commands and then run the same notebook in batch mode,
you can set the variable DWS_MAGIC_DISABLE in your notebook, ahead of the call to load the magics (%load_ext).
If you set it to True, the commands will be loaded in a disabled state and will run with no effect. Setting
DWS_MAGIC_DISABLE to False will load the magics in the enabled state and run all commands normally.

Loading the magics

To load the magics, run the following in an interactive cell of your Jupyter Notebook:

import dataworkspaces.kits.jupyter
%load_ext dataworkspaces.kits.jupyter

If the load runs correctly, you should see output like this in your cell:

Ran DWS initialization. The following magic commands have been added to your notebook:

• %dws_info - print information about your dws environment

• %dws_history - print a history of snapshots in this workspace

• %dws_snapshot - save and create a new snapshot

• %dws_lineage_table - show a table of lineage for the workspace resources

• %dws_lineage_graph - show a graph of lineage for a resource

• %dws_results - show results from a run (results.json file)

Run any command with the --help option to see a list of options for that command. The variable
DWS_JUPYTER_NOTEBOOK has been added to your variables, for use in future DWS calls.

If you want to disable the DWS magic commands (e.g. when running in a batch context), set the variable
DWS_MAGIC_DISABLE to True ahead of the %load_ext call.

Magic Command reference

We now describe the command options for the individual magics.

%dws_info
usage: dws_info [-h]

Print some information about this workspace

optional arguments:
-h, --help show this help message and exit

%dws_history

usage:
dws_history [-h] [–max-count MAX_COUNT] [–tail] [–baseline TAG_OR_HASH]

34 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

[–heatmap] [maximize-metrics METRICS] [–minimize-metrics METRICS]

Print a history of snapshots in this workspace

optional arguments:
-h, --help show this help message and exit

--max-count MAX_COUNT Maximum number of snapshots to show

--tail Just show the last 10 entries in reverse order

--baseline TAG_OR_HASH Snapshot tag or hash to use as a basis for metrics com-
parison.

--heatmap Show a heatmap for metrics columns

--maximize-metrics METRICS Metrics where larger values are better (e.g. accu-
racy)

--minimize-metrics METRICS Metrics where smaller values are better (e.g. loss)

For easy visualization of results, the %dws_history command supports two styles of color coding. The --heatmap
option will color code the background of metrics cells from dark red (worst results) to dark green (best results). For
common metrics, like accuracy and loss, DWS knows the directionality of the metric (higher is better vs. lower is
better). For less common or custom metrics, you can use the --maximize-metrics and --minimize-metrics
options to specify this. Here is an example heatmap:

The second style of coloring takes a baseline snapshot. Any metric values better than the baseline have their text colored
green, any metric values close to the baseline are bold black text, and any metric values worse than the baseline are
colored red. The --baseline=SNAPSHOT option enables this display mode. Here is an example:

1.5. 5. Kits Reference 35

Data Workspaces Documentation, Release 1.5.2

%dws_snapshot
usage: dws_snapshot [-h] [-m MESSAGE] [-t TAG]

Save the notebook and create a new snapshot

optional arguments:
-h, --help show this help message and exit

-m MESSAGE, --message MESSAGE Message describing the snapshot

-t TAG, --tag TAG Tag for the snapshot. Note that a given tag can only be used
once (without deleting the old one).

%dws_lineage_table
usage: dws_lineage_table [-h] [–snapshot SNAPSHOT]

Show a table of lineage for the workspace’s resources

optional arguments:
-h, --help show this help message and exit

--snapshot SNAPSHOT If specified, print lineage as of the specified snapshot hash
or tag

%dws_lineage_graph
usage: dws_lineage_table [-h] [–resource RESOURCE] [–snapshot SNAPSHOT]

Show a graph of lineage for a resource

optional arguments:
-h, --help show this help message and exit

--resource RESOURCE Graph lineage from this resource. Defaults to the results
resource. Error if not specified and there is more than one.

--snapshot SNAPSHOT If specified, graph lineage as of the specified snapshot hash
or tag

%dws_results
usage: dws_results [-h] [–resource RESOURCE] [–snapshot SNAPSHOT]

Show results from a run (results.json file)

optional arguments:

36 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

-h, --help show this help message and exit

--resource RESOURCE Look for the results.json file in this resource. Otherwise,
will look in all results resources and return the first match.

--snapshot SNAPSHOT If specified, get results as of the specified snapshot or tag.
Otherwise, looks at current workspace and then most recent
snapshot.

1.5.2 Scikit-learn

This module (dataworkspaces.kits.scikit_learn) provides integration with the scikit-learn framework. The
main class provided here is LineagePredictor, which wraps any class following sklearn’s predictor proto-
col. It captures inputs, model parameters and results. This module also provides Metrics and its subclasses,
which support the computation of common metrics and the writing of them to a results file. Finally, there is
train_and_predict_with_cv(), which runs a common sklearn classification workflow, including grid search.

class dataworkspaces.kits.scikit_learn.BinaryClassificationMetrics(expected, predicted,
sample_weight=None)

Given an array of expected (target) values and the actual predicted values from a classifier, compute metrics that
make sense for a binary classifier, including accuracy, precision, recall, roc auc, and f1 score.

print_metrics(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)→ None
Print the metrics to a file

score()→ float
Metric for binary classification is accuracy

class dataworkspaces.kits.scikit_learn.LineagePredictor(predictor, metrics: Union[str, type],
input_resource: Union[str, data-
workspaces.utils.lineage_utils.ResourceRef],
results_resource: Optional[Union[str, data-
workspaces.utils.lineage_utils.ResourceRef]]
= None, model_save_file: Optional[str] =
None, workspace_dir: Optional[str] =
None, verbose: bool = False)

This is a wrapper for adding lineage to any predictor in sklearn. To use it, instantiate the predictor (for classifi-
cation or regression) and then create a new instance of LineagePredictor.

The initializer finds the associated workspace and initializes a Lineage instance. The input_resource is recorded
in this lineage. Other methods call the underlying wrapped predictor’s methods, with additional functionality as
needed (see below).

Parameters
predictor Any sklearn predictor instance. It must have fit and predict methods.

metrics Either a string naming a metrics type or a subclass of Metrics. If a string, it should be one of: bi-
nary_classification, multiclass_classification, or regression.

input_resource Resource providing the input data to this model. May be specified by name, by a local file path,
or via a ResourceRef.

resource_resource (optional) Resource where the results are to be stored. May be specified by name, by a local
file path, or via a ResourceRef. If not specified, will try to infer from the workspace.

model_save_file (optional) Name of file to store a (joblib-formmatted) serialization of the trained model upon
completion of the fit() method. This should be a relative path, as it is stored under the results resource.
If model_save_file is not specified, no model is saved.

1.5. 5. Kits Reference 37

https://scikit-learn.org

Data Workspaces Documentation, Release 1.5.2

workspace_dir (optional) Directory specifying the workspace. Usually can be inferred from the current direc-
tory.

verbose If True, print a lot of detailed information about the execution of Data Workspaces.

Example
Here is an example useage of the wrapper, taken from the Quick Start:

from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from dataworkspaces.kits.scikit_learn import load_dataset_from_resource
from dataworkspaces.kits.scikit_learn import LineagePredictor

dataset = load_dataset_from_resource('sklearn-digits-dataset')
X_train, X_test, y_train, y_test = train_test_split(

dataset.data, dataset.target, test_size=0.5, shuffle=False)
classifier = LineagePredictor(SVC(gamma=0.001),

metrics='multiclass_classification',
input_resource=dataset.resource,
model_save_file='digits.joblib')

classifier.fit(X_train, y_train)
score = classifier.score(X_test, y_test)

Methods
fit(X, y, *args, **kwargs)

The underlying fit() method of a predictor trains the predictio based on the input data (X) and labels (y).

If the input resource is an api resource, the wrapper captures the hash of the inputs. If model_save_file
was specified, it also saves the trained model.

predict(X)
The underlying predict() method is called directly, without affecting the lineage.

score(X, y, sample_weight=None)
This method make predictions from a trained model and scores them according to the metrics specified
when instantiated the wrapper.

If the input resource is an api resource, the wrapper captures its hash. The wapper runs the wrapped predic-
tor’s predict() method to generate predictions. A metrics object is instantiated to compute the metrics
for the predictions and a results.json file is written to the results resource. The lineage data is saved
and finally the score is computed from the predictions and returned to the caller.

class dataworkspaces.kits.scikit_learn.Metrics(expected, predicted, sample_weight=None)
Metrics and its subclasses are convenience classes for sklearn metrics. The subclasses of Matrics are used by
train_and_predict_with_cv() in printing a metrics report and generating the metrics json file.

abstract print_metrics(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)→
None

Print the metrics to a file

abstract score()→ float
Given the expected and predicted values, compute the metric for this type of predictor, as needed for the
predictor’s score() method. This is used in the wrapped classes to avoid multiple calls to predict().

class dataworkspaces.kits.scikit_learn.MulticlassClassificationMetrics(expected, predicted,
sample_weight=None)

Given an array of expected (target) values and the actual predicted values from a classifier, compute metrics that

38 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

make sense for a multi-class classifier, including accuracy and sklearn’s “classification report” showing per-class
metrics.

print_metrics(file=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>)
Print the metrics to a file

score()→ float
Metric for multiclass classification is accuracy

dataworkspaces.kits.scikit_learn.load_dataset_from_resource(resource_name: str, subpath:
Optional[str] = None, workspace_dir:
Optional[str] = None)→
sklearn.utils.Bunch

Load a datset (data and targets) from the specified resource, and returns an sklearn-style Bunch (a dictionary-like
object). The bunch will include at least three attributes:

• data - a NumPy array of shape number_samples * number_features

• target - a NumPy array of length number_samples

• resource - a ResourceRef that provides the resource name and subpath (if any) for the data

Some other attributes that may also be present, depending on the data set:

• DESCR - text containing a full description of the data set (for humans)

• feature_names - an array of length number_features containing the name of each feature.

• target_names - an array containing the name of each target class

Data sets may define their own attributes as well (see below).

Parameters
resource_name The name of the resource containing the dataset.

subpath Optional subpath within the resource where this specific dataset is located. If not specified, the root of
the resource is used.

workspace_dir The root directory of your workspace in the local file system. Usually, this can be left unspecified
and inferred by DWS, which will search up from the current working directory.

Creating a Dataset
To create a dataset in your resource that is suitable for importing by this function, you simply need to create a file
for each attribute you want in the bunch and place all these files in the same directory within your resource. The
names of the files should be ATTRIBUTE.extn where ATTRIBUTE is the attribute name (e.g. data or DESCR)
and .extn is a file extension indicating the format. Supported file extensions are:

• .txt or .rst - text files

• .csv - csv files. These are read in using numpy.loadtxt(). If this fails because the csv does not contain
all numeric data, pandas is used to read in the file. It is then converted back to a numpy array.

• .csv.gz or .csv.bz2 - these are compressed csv files which are treated the same was as csv files (numpy
and pandas will automatically uncompress before parsing).

• .npy - this a a file containing a serialized NumPy array saved via numpy.save(). It is loaded using
numpy.load().

1.5. 5. Kits Reference 39

Data Workspaces Documentation, Release 1.5.2

1.5.3 TensorFlow

Integration with Tensorflow 1.x and 2.0

This is an experimental API and subject to change.

Wrapping a Karas Model
Below is an example of wrapping one of the standard tf.keras model classes, based on https://www.tensorflow.org/
tutorials/keras/basic_classification. Assume we have a workspace already set up, with two resources: a Source Data
resource of type api-resource, which is used to capture the hash of input data as it is passed to the model, and a Results
resource to keep the metrics. The only change we need to do to capture the lineage from the model is to wrap the
model’s class, using add_lineage_to_keras_model_class().

Here is the code:

TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras

from dataworkspaces.kits.tensorflow1 import add_lineage_to_keras_model_class

Wrap our model class. This is the only DWS-specific change needed.
We add an optional checkpoint configuration, which will cause checkpoints
to be written to the workspace's scratch directory and then the best
checkpoint copied to the results resource.
keras.Sequential = add_lineage_to_keras_model_class(keras.Sequential,

checkpoint_config=CheckpointConfig(model='fashion',
monitor='loss'))

fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()

model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.Dense(128, activation=tf.nn.relu),
keras.layers.Dense(10, activation=tf.nn.softmax)

])

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=5)

test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)

This will create a results.json file in the results resource. It will look like this:

{
"step": "test",
"start_time": "2019-09-26T11:33:22.100584",
"execution_time_seconds": 26.991521,

(continues on next page)

40 Chapter 1. Data management for reproducability and collaboration

https://www.tensorflow.org/tutorials/keras/basic_classification
https://www.tensorflow.org/tutorials/keras/basic_classification

Data Workspaces Documentation, Release 1.5.2

(continued from previous page)

"parameters": {
"optimizer": "adam",
"loss_function": "sparse_categorical_crossentropy",
"epochs": 5,
"fit_batch_size": null,
"evaluate_batch_size": null

},
"run_description": null,
"metrics": {
"loss": 0.3657455060243607,
"acc": 0.8727999925613403

}
}

Subclassing from a Keras Model
If you subclass from a Keras Model class, you can just use add_lineage_to-keras_model_class() as a decorator.
Here is an example:

@add_lineage_to_keras_model_class
class MyModel(keras.Model):
def __init__(self):
The Tensorflow documentation tends to specify the class name
when calling the superclass __init__ function. Don't do this --
it breaks if you use class decorators!
#super(MyModel, self).__init__()
super().__init__()
self.dense1 = tf.keras.layers.Dense(4, activation=tf.nn.relu)
self.dense2 = tf.keras.layers.Dense(5, activation=tf.nn.softmax)

def call(self, inputs):
x1 = self.dense1(inputs)
return self.dense2(x1)

model = MyModel()

import numpy as np

model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(np.zeros(20).reshape((5,4)), np.ones(5), epochs=5)
test_loss, test_acc = model.evaluate(np.zeros(16).reshape(4,4), np.ones(4))

print('Test accuracy:', test_acc)

Supported datatypes for API Resources
If you are using the API Resource Type for your input resource, the model wrapper will hash the incoming data pa-
rameters and include the hash values in the data lineage. To compute the hashes, Data Workspaces must access the
underlying data representation. The following data types are currently supported:

• NumPy ndarray

• Pandas DataFrame and Series

1.5. 5. Kits Reference 41

Data Workspaces Documentation, Release 1.5.2

• Tensorflow Tensor and Dataset, as well as tuples and dictionaries containing these types. These types sup-
ported if you are either running Tensorflow 2.x (graph or eager mode) or 1.x only in eager mode. This restriction
is due to the inability to access the underlying tensor representation when Tensorflow is running in graph mode
in version 1.x

If you are using another data representation, or running Tensorflow 1.x in graph mode, you can always use a resource
type that stores the data in files (e.g. git or local-files) and pass in the input resource name to the wrapper function.

API
class dataworkspaces.kits.tensorflow.CheckpointConfig(model_name: str, monitor: str = 'val_loss',

save_best_only: bool = False, mode: str =
'auto', save_freq: Union[str, int] = 'epoch')

Configuration for checkpoints, to be passed as a parameter to add_lineage_to_keras_model_class(), in-
stead of directly instantiating DwsModelChecpoint.

The checkpoints are initially written under the workspace’s scratch space. At the end of training, the best check-
point is copied to the results resource.

The configuration fields are:

• model_name - name of the model to use in checkpoint files

• monitor - metric to monitor - defaults to val_loss

• save_best_only - if True, only checkpoints better than the previous are kept.

• mode - how to determine whether a metric is the “best” - auto, min, or max

• save_freq - ‘epoch’ or an interger

property mode
Alias for field number 3

property model_name
Alias for field number 0

property monitor
Alias for field number 1

property save_best_only
Alias for field number 2

property save_freq
Alias for field number 4

class dataworkspaces.kits.tensorflow.DwsModelCheckpoint(*args: Any, **kwargs: Any)
Subclass of tf.keras.callbacks.ModelCheckpoint which will save checkpoints to the workspace’s stratch space
and then move the most recent/best checkpoint to the results directory at the end of the run.

You can instantiate this class directly and pass it to the callbacks parameter of the model’s fit() method:

model.fit(train_images, train_labels, epochs=10,
callbacks=[DwsModelCheckpoint('fashion', monitor='loss', save_best_

→˓only=True)])

You can also pass CheckpointConfig instance to the add_lineage_to_keras_model_class() wrapper
function.

42 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

dataworkspaces.kits.tensorflow.add_lineage_to_keras_model_class(Cls: type, input_resource:
Optional[Union[str, data-
workspaces.utils.lineage_utils.ResourceRef]]
= None, results_resource:
Optional[Union[str, data-
workspaces.utils.lineage_utils.ResourceRef]]
= None, workspace_dir:
Optional[str] = None,
checkpoint_config: Op-
tional[dataworkspaces.kits.tensorflow.CheckpointConfig]
= None, verbose: bool = False)
→ type

This function wraps a Keras model class with a subclass that overwrites key methods to make calls to the data
lineage API.

Parameters:
• Cls – the class being wrapped

• input_resources – optional list of input resources to this model. Each resource may be specified by
name, by a local file path, or via a ResourceRef. If no inputs are specified, will try to infer from the
workspace.

• results_resource – optional resource where the results are to be stored. May be specified by name, by
a local file path, or via a ResourceRef. if not specified, will try to infer from the workspace.

• workspace-dir – Optional directory specifying the workspace. Usually can be inferred from the current
directory.

• checkpoint_config – Optional instance of CheckpointConfig, which is used to enable checkpointing
on fit and fit_generator()

• verbose – If True, print extra debugging information.

The following methods are wrapped:

• __init__() - loads the workspace and adds dws-specific class members

• compile() - captures the optimizer and loss_function parameter values

• fit() - captures the epochs and batch_size parameter values; if input is an API resource, capture hash
values of training data, otherwise capture input resource name. If the input is an API resource, and it is
either a Keras Sequence or a generator, writes the generator and captures the hashes of returned values as
it is iterated through.

• evaluate() - captures the batch_size parameter value; if input is an API resource, capture hash values
of test data, otherwise capture input resource name; capture metrics and write them to results resource.
If the input is an API resource, and it is either a Keras Sequence or a generator, writes the generator and
captures the hashes of returned values as it is iterated through.

1.5. 5. Kits Reference 43

Data Workspaces Documentation, Release 1.5.2

1.6 6. Resource Reference

This section provide a little detail on how to use specific resource types. For specific command line options, please see
the Command Reference.

1.6.1 Git resources

The git resource type provides project tracking and management for Git repositories. There are actually two types of
git resources supported:

1. A standalone repository. This can be either one controller by the user or, for source data, a 3rd party repository
to be treated as a read-only resource.

2. A subdirectory of the data workspace’s git repository can be treated as a separate resource. This is especially
convenient for small projects, where multiple types of data (source data, code, results, etc.) can be kept in a
single repository but versioned independently.

When running the dws add git ... commend, the type of repository (standalone vs. subdirectory of the main
workspace) is automatically detected. In either case, it is expected that there is a local copy of the repository available
when adding it as a resource to the workspace. It is recommended, but not required, to have a remote origin, so that
the push, pull and clone commands can work with the resource.

Examples

When initializing a new workspace, one can add sub-directory resources for any and each of the resource roles (source-
data, code, intermediate-data, and results). This is done via the --create-resources option as follows:

$ mkdir example-ws
$ cd example-ws/
$ dws init --create-resources=code,results
$ dws init --create-resources=code,results
Have now successfully initialized a workspace at /Users/dws/code/t/example-ws
Will now create sub-directory resources for code, results
Added code to git repository
Have now successfully Added Git repository subdirectory code in role 'code' to␣

→˓workspace
Added results to git repository
Have now successfully Added Git repository subdirectory results in role 'results' to␣

→˓workspace
Finished initializing resources:
code: ./code
results: ./results

$ ls
code results

Here is an example from the Quick Start where we add an entire third party repository to our workspace as a read-only
resource. We first clone it into a subdirectory of the workspace and then tell dws about it:

git clone https://github.com/jfischer/sklearn-digits-dataset.git
dws add git --role=source-data --read-only ./sklearn-digits-dataset

44 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

1.6.2 Support for Large Files: Git-lfs and Git-fat integration

It can be nice to manage your golden source data in a Git repository. Unfortunately, due to its architecture and focus as a
source code tracking system, Git can have significant performance issues with large files. Furthermore, hosting services
like GitHub place limits on the size of individual files and on commit sizes. To get around this, various extensions to
Git have sprung up. Data Workspaces currently integrates with two of them, git-lfs and git-fat.

Git-lfs

Git-lfs (large file storage) is a utility which interacts with a git hosting service using a special protocol. This protocol
is supported by most popular Git hosting services/servers, including GitHub and GitLab. You need to manually install
the git-lfs executable (see https://git-lfs.github.com for details).

Data Workspaces automatically determines whether a particular git repository is using git-lfs by looking for any
references to git-lfs in a .gitattributes within the repository. This is done for both the workspace’s metadata
repository and any git resources. DWS also will ensure that the user is correctly configured for git-lfs, by running
git-lfs install if the user does not have an associated entry for in their .gitconfig file.

We support the following integration points with git-lfs:

1. The git repo for the workspace itself can be git-lfs enabled when it is created. This is done through the
--git-lfs-attributes command line option on dws init. See the Command Reference entry for details
(or the example below).

2. Any dws push or dws pull of a git-lfs-enabled workspace will automatically call the associated git-lfs com-
mand for the workspace’s main repo.

3. If you add a git repository as a resource to the workspace, and it has references to git-lfs in a .gitattributes
file, then any dws push or dws pull commands will automatically call the associated git-lfs commands.

Git-fat

Git-fat allows you to store your large files on a host you control that is accessible via ssh (or other protocols supported
through rsync). The large files themselves are hashed and stored on the (remote) server. The metadata for these files
is stored in the git repository and versioned with the rest of your git files.

Git-fat is just a Python script, which we ship as a part of the dataworkspaces Python package.1 Running pip
install dataworkspaces will put git-fat into your path and make it available to your git commands and dws
commands.

We support the following integration points with git-fat:

1. The git repo for the workspace itself can be git-fat enabled when it is created. This is done through command
line options on dws init. See the Command Reference entry for details (or the example below).

2. Any dws push or dws pull of a git-fat-enabled workspace will automatically call the associated git-fat com-
mand for the workspace’s main repo.

3. If you add a git repository as a resource to the workspace, and it has a .gitfat file, then any dws push or dws
pull commands will automatically call the associated git-fat commands.

4. As mentioned above, git-fat is included in the dataworkspaces package and installed in your path.
1 Unfortunately, git-fat is written in Python 2, so you will need to have Python 2 available on your system to use it.

1.6. 6. Resource Reference 45

https://git-lfs.github.com
https://github.com/jedbrown/git-fat
https://docs.gitlab.com/ee/topics/git/lfs/index.html
https://git-lfs.github.com

Data Workspaces Documentation, Release 1.5.2

Example

Here is an example using git-fat to store all gzipped files of the workspace’s main git repo on a remote server.

First, we set up a directory on our remote server to store the large files:

fat@remote-server $ mkdir ~/fat-store

Now, back on our personal machine, we initialize a workspace, specifying the remote server and that .gz files should
be managed by git-fat:

local $ mkdir git-fat-example
local $ cd git-fat-example/
local $ dws init --create-resources=source-data \

--git-fat-remote=remote-server:/home/fat/fat-store \
--git-fat-user=fat --git-fat-attributes='*.gz'

local $ ls
source-data

A bit later, we’ve added some .gz files to our source data resource. We take a snapshot and then dws push to the origin:

local $ ls source-data
README.txt census-state-populations.csv.gz zipcode.csv.gz
local $ dws snapshot s1
local $ dws push # this will also push to the remote fat store

If we now go to the remote store, we can see the hashed files:

fat@remote-server $ ls fat-store
26f2cac452f70ad91da3ccd05fc40ba9f03b9f48 d9cc0c11069d76fe9435b9c4ca64a335098de2d7

Our local workspace has our full files, which can be used by our scripts as-is. However, if you look at the origin
repository, you will find the content of each .gz file replaced by a single line referencing the hash. If you clone this
repo, you will get the full files, through the magic of git-fat.

1.6.3 Adding resources using rclone

The rclone resource type leverages the rclone command line utility to provide synchronization with a variety of remote
data services.

dws add rclone [options] source-repo target-repo

dws add rclone adds a remote repository set up using rclone.

We use rclone to set up remote repositories.

46 Chapter 1. Data management for reproducability and collaboration

https://rclone.org

Data Workspaces Documentation, Release 1.5.2

Example

We use rclone config to set up a repository pointing to a local directory:

$ rclone config show
; empty config

$ rclone config create localfs local unc true

The configuration file (typically at ~/.config/rclone/rclone.conf) now looks like this:

[localfs]
type = local
config_automatic = yes
unc = true

Next, we use the backend to add a repository to dws:

$ dws add rclone --role=source-data my_local_files:/Users/rupak/tmp tmpfiles

This creates a local directory tmpfiles and copies the contents of /Users/rupak/tmp to it.

Similarly, we can make a remote S3 bucket:

$ rclone config
mbk-55-51:docs rupak$ rclone --config=rclone.conf config
Current remotes:

Name Type
==== ====
localfs local

e) Edit existing remote
n) New remote
d) Delete remote
r) Rename remote
c) Copy remote
s) Set configuration password
q) Quit config
e/n/d/r/c/s/q> n
name> s3bucket
Type of storage to configure.

Pick choice 4 for S3 and configure the bucket
...
set configuration parameters

Once the S3 bucket is configured, we can get files from it:

$ dws add rclone --role=source-data s3bucket:mybucket s3files

1.6. 6. Resource Reference 47

Data Workspaces Documentation, Release 1.5.2

Configuration Files

By default, we use the default configuration file used by rclone. This is the file printed out by:

$ rclone config file

and usually resides in $HOME/.config/rclone/rclone.conf

However, you can specify a different configuration file:

$ dws add rclone --config=/path/to/configfile --role=source-data localfs:/Users/rupak/
→˓tmp tmpfiles

In this case, make sure the config file you are using has the remote localfs defined.

rclone synchronization options

Data Workspaces uses rclone for uni-directional synchronization. Either the workspace or the rclone remote is the
master and the other side is the replica. All changes must be made on the master side and the replica side treats the
data as read-only. The roles of the workspace and the remote are determined with the dws add rclone command via
the -master option. It must hve one of three values:

• none (the default) means that no action is taken for pushes and pulls. The user is responsible for manually calling
rclone for synchronization. Use this option if you want full control over your synchronization or need to change
the direction of the synchronization based on the situation.

• remote means that pulls will be done, but not pushes. The data is treated as read-only from the perspective of
the workspace.

• local means that the local system is the master and the remote the replica. Pushes will be done for this resource,
but not pulls.

When first adding the resource or cloning to a new machine, if the local directory does not exist, and remote or none
were specified, the contents of the remote will copied down to the local directory.

The --sync-mode option to dws add rclone will also impact the synchonization behavior. This option determines
the rclone command used when synchronization data. The following two options are supported:

• copy - files are added or overwritten without deleting any files present at the replica. This is the default and the
“safer” option.

• sync - files at the replica are removed if they are no longer present at the master. If the master both adds and
removes files, this option ensures that the master and replica contain the same set of files.

1.6.4 S3 Resources

The S3 resource type provides a resource interface for an Amazon AWS S3 bucket. Unlike the Git, rclone, and local
files resource types, S3 resources do not store files locally. Instead, files are accessed via the ResourceFileSystem
interface defined in dataworkspaces.api. The S3 bucket versioning capability is leveraged to support accessing
older versions of files associated with a snapshot.

48 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

Installation

The S3 dependencies are not included with DWS by default. To install with the required dependencies, specify the “s3”
extra as follows:

pip install dataworkspaces[s3]

Adding an S3 Resource

To add an S3 resource to your workspace, first ensure that versioning is enabled for your bucket on AWS. Next, configure
the AWS credentials on your local machine using Amazon’s aws command line tool. Then, run the dws add command
as follows, where BUCKET_NAME is the name of your bucket, and ROLE is one of source-data, code, or intermediate-
data:

dws add s3 --role ROLE BUCKET_NAME

Accessing Files

After adding an S3 resource, you can get a ResourceFileSystem instance via a call to
get_filesystem_for_resource(). Here is an example:

import csv
from dataworkspaces.api import get_filesystem_for_resource

fs = get_filesystem_for_resource('my-s3-resource')

get a list of the top level files and directories
files = fs.ls('')

open a csv file for reading
with fs.open('myfile.csv' 'r') as f:

reader = csv.reader(f)

Snapshots

When you take a snapshot of an S3 resource, a file is created in the bucket with the key .snapshots/HASH.json.gz,
where HASH is the hash code of the snapshot. This file contains a mapping between each file currently active in the
bucket and its version id. The file is also cached locally in the workspace, but not checked into the workspace’s Git
repository.

A file containing the hash code associated with the snapshot is also created at .dataworkspaces/scratch/
RESOURCE_NAME/current_snapshot.txt. When this file is present, the filesystem interface described in the previ-
ous section will return the set of files and versions as of the snapshot rather than the latest in the bucket. When a prior
snapshot is restored, the hash associated with that snapshot is written to the current_snapshot.txt file, causing that
snapshot to be used for determining files and file versions.

When a snapshot is active for the S3 resource, the resource becomes read-only. If you manually remove the
current_snapshot.txt file, the latest versions of each file become visible through the API.

1.6. 6. Resource Reference 49

Data Workspaces Documentation, Release 1.5.2

Feedback Requested

This is the first major release with the S3 resource functionality. We would appreciate your feedback on how you want
to use S3 resources in your data science projeccts. Thanks!

1.7 7. Internals: Developer’s Guide

This section is a guide for people working on the development of Data Workspaces or people who which to extend it
(e.g. through their own resource types or kits).

1.7.1 Installation and setup for development

In summary:

1. Install Python 3 via the Anaconda distribution.

2. Make sure you have the git and make utilties on your system.

3. Create a virtual environment called dws and activate it.

4. Install mypy via pip.

5. Clone the main data-workspaces-python repo.

6. Install the dataworkpaces package into your virtual environment.

7. Download and configure rclone.

8. Run the tests.

Here are the details:

We recommend using Anaconda3 for development, as it can be easily installed on Mac and Linux and includes most of
the packages you will need for development and data science projects. You will also need some basic system utilities:
git and make (which may already be installed).

Once you have Anaconda3 installed, create a virtual environment for your work:

conda create --name dws

To activate the environment:

conda activate dws

You will need the mypy type checker, which is run as part of the tests. It is best to install via pip to get the latest version
(some older versions may be buggy). Once you have activated your environment, mypy may be installed as follows:

pip install mypy

Next, clone the Data Workspaces main source tree:

git clone git@github.com:data-workspaces/data-workspaces-core.git

Now, we install the data workspaces library, via pip, using an editable mode so that our source tree changes are
immediately visible:

cd data-workspaces-core
pip install --editable `pwd`

50 Chapter 1. Data management for reproducability and collaboration

https://www.anaconda.com/distribution/
https://mypy.readthedocs.io/en/latest/

Data Workspaces Documentation, Release 1.5.2

With this setup, you should not have to configure PYTHONPATH.

Next, we install rclone, a file copying utility used by the rclone resource. You can download the latest rclone
executable from http://rclone.org. Just make sure that the executable is available in your executable path. Alternatively,
on Linux, you can install rclone via your system’s package manager. To configure rclone, see the instructions here
in the Resource Reference.

Now, you should be ready to run the tests:

cd tests
make test

The tests will print a lot to the console. If all goes well, it should end with something like this:

--
Ran 40 tests in 23.664s

OK

1.7.2 Overall Design

Here is a block diagram of the system architecture:

The core of the system is the Workspaces API, which is located in dataworkspaces/workspace.py. This API
provides a base Workspace classes for the workspace and a base Resource class for resources. There are also several
mixin classes which define extensions to the basic functionality. See Core Workspace and Resource API for details.

1.7. 7. Internals: Developer’s Guide 51

http://rclone.org

Data Workspaces Documentation, Release 1.5.2

The Workspace class has one or more backends which implement the storage and management of the workspace
metadata. Currently, there is only one complete backend, the git backend, which stores its metadata in a git repository.

Independent of the workspace backend are resource types, which provide concrete implementations of the the
Resource base class. These currently include resource types for git, git subdirectories, rclone, and local files.

Above the workspace API sits the Command API, which implements command functions for operations like init, clone,
push, pull, snapshot and restore. There is a thin layer above this for programmatic access (dataworkspaces.api) as
well as a full command line interface, implmented using the click package (see dataworkspaces.dws).

The Lineage API is also implemented on top of the basic workspace interface and provides a way for pipeline steps to
record their inputs, outputs, and code dependencies.

Finally, kits provide integration with user-facing libraries and applications, such as Scikit-learn and Jupyter notebooks.

Code Layout

The code is organized as follows:

• dataworkspaces/

– api.py - API to run a subset of the workspace commands from Python. This is useful for building inte-
grations.

– dws.py - the command line interface

– errors.py - common exception class definitions

– lineage.py - the generic lineage api

– workspace.py - the core api for workspaces and resources

– backends/ - implementations of workspace backends

– utils/ - lower level utilities used by the upper layers

– resources/ - implementations of the resource types

– commands/ - implementations of the individual dws commands

– third_party/ - third-party code (e.g. git-fat)

– kits/ - adapters to specific external technologies

Git Database Layout

When using the git backend, a data workspace is contained within a Git repository. The metadata about resources,
snapshots and lineage is stored in the subdirectory .dataworkspace. The various resources can be other subdirectories
of the workspace’s repository or may be external to the main Git repo.

The layout for the files under the .dataworkspace directory is as follows:

• .dataworkspace/

– config.json - overall configuration (e.g. workspace name, global params)

– local_params.json - local parameters (e.g. hostname); not checked into git

– resources.json - lists all resources and their config parameters

– resource_local_params.json - configuration for resources that is local to this machine (e.g. path to
the resource); not checked into git

– current_lineage/ - contains lineage files reflecting current state of each resource; not checked into git

52 Chapter 1. Data management for reproducability and collaboration

https://click.palletsprojects.com/en/7.x/

Data Workspaces Documentation, Release 1.5.2

– file/ - contains metadata for local files based resources; in particular, has the file-level hash information
for snapshots

– snapshots/ - snapshot metadata

∗ snapshot-<HASHCODE>.json - lists the hashes for each resource in the snapshot. The hash of this
file is the hash of the overall snapshot.

∗ snapshot_history.json - metadata for the past snapshots

– snapshot_lineage/ - contains lineage data for past snapshots

∗ <HASHCODE>/ - directory containing the current lineage files at the time of the snapshot associated
with the hashcode. Unlike current_lineeage, this is checked into git.

In designing the workspace database, we try to follow the following guidelines:

1. Use JSON as our file format where possible - it is human readable and editable and easy to work with from within
Python.

2. Local or uncommitted state is not stored in Git (we use .gitignore to keep the files outside of the repo). Such files
are initialized by dws init and dws clone.

3. Avoid git merge conflicts by storing data in seperate files where possible. For example, the resources.json file
should really be broken up into one file per resource, stored under a common directory (see issue #13).

4. Use git’s design as an inspiration. It provides an efficient and flexible representation.

1.7.3 Command Design

The bulk of the work for each command is done by the core Workspace API and its backends. The command fuc-
tion itself (dataworkspaces.commands.COMMAND_NAME) performs parameter-checking, calls the associated parts of
Workspace API, and handles user interactions when needed.

1.7.4 Resource Design

Resources are orthoginal to commands and represent the collections of files to be versioned.

A resource may have one of four roles:

1. Source Data Set - this should be treated read-only by the ML pipeline. Source data sets can be versioned.

2. Intermediate Data - derived data created from the source data set(s) via one or more data pipeline stages.

3. Results - the outputs of the machine learning / data science process.

4. Code - code used to create the intermediate data and results, typically in a git repository or Docker container.

The treatment of resources may vary based on the role. We now look at resource functionality per role.

1.7. 7. Internals: Developer’s Guide 53

Data Workspaces Documentation, Release 1.5.2

Source Data Sets

We want the ability to name source data sets and swap them in and out without changing other parts of the workspace.
This still needs to be implemented.

Intermediate Data

For intermediate data, we may want to delete it from the current state of the workspace if it becomes out of date (e.g.
a data source version is changed or swapped out). This still needs to be implemented.

Results

In general, results should be additive.

For the snapshot command, we move the results to a specific subdirectory per snapshot. The name of this sub-
directory is determined by a template that can be changed by setting the parameter results.subdir. By de-
fault, the template is: {DAY}/{DATE_TIME}-{USER}-{TAG}. The moving of files is accomplished via the method
results_move_current_files(rel_path, exclude) on the Resource <resources> class. The snapshot()
method of the resource is still called as usual, after the result files have been moved.

Individual files may be excluded from being moved to a subdirectory. This is done through a configuration command.
Need to think about where this would be stored – in the resources.json file? The files would be passed in the exclude
set to results_move_current_files.

If we run restore to revert the workspace to an older state, we should not revert the results database. It should always
be kept at the latest version. This is done by always putting results resources into the leave set, as if specified in the
--leave option. If the user puts a results resource in the --only set, we will error out for now.

1.7.5 Integration API

The module dataworkspaces.api provides a simplified, high level programmatic inferface to Data Workspaces. It
is for integration with third-party tooling.

This is an API for selected Data Workspaces management functions.

class dataworkspaces.api.ResourceFileSystem(resource: dataworkspaces.workspace.FileResourceMixin)
subset of fsspec supported by our file resources.

class dataworkspaces.api.ResourceInfo(name: str, role: str, resource_type: str, local_path: Optional[str])
Named tuple representing the results from a call to get_resource_info().

property local_path
Alias for field number 3

property name
Alias for field number 0

property resource_type
Alias for field number 2

property role
Alias for field number 1

class dataworkspaces.api.SnapshotInfo(snapshot_number: int, hashval: str, tags: List[str], timestamp: str,
message: str, metrics: Optional[Dict[str, Any]])

Named tuple represneting the results from a call to get_snapshot_history()

54 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

property hashval
Alias for field number 1

property message
Alias for field number 4

property metrics
Alias for field number 5

property snapshot_number
Alias for field number 0

property tags
Alias for field number 2

property timestamp
Alias for field number 3

dataworkspaces.api.get_api_version()
The API version is maintained independently of the overall DWS version. It should be more stable.

dataworkspaces.api.get_filesystem_for_resource(name: str, workspace_uri_or_path: Optional[str] =
None, verbose: bool = False)→
Optional[dataworkspaces.api.ResourceFileSystem]

Get the a filesystem-like object for the named resource. If it isn’t a FileResource, returns None.

dataworkspaces.api.get_local_path_for_resource(name: str, workspace_uri_or_path: Optional[str] =
None, verbose: bool = False)→ Optional[str]

If a local path is available for this resource, return it. Otherwise, return None.

dataworkspaces.api.get_resource_info(workspace_uri_or_path: Optional[str] = None, verbose: bool =
False)→ List[dataworkspaces.api.ResourceInfo]

Returns a list of ResourceInfo instances, describing the resources defined for this workspace.

dataworkspaces.api.get_results(workspace_uri_or_path: Optional[str] = None, tag_or_hash: Optional[str]
= None, resource_name: Optional[str] = None, verbose: bool = False)→
Optional[Tuple[Dict[str, Any], str]]

Get a results file as a parsed json dict. If no resource or snapshot is specified, searches all the results resources
for a file. If a snapshot is specified, we look in the subdirectory where the resuls have been moved. If no snapshot
is specified, and we don’t find a file, we look in the most recent snapshot.

Returns a tuple with the results and the logical path (resource:/subpath) to the results. If nothing is found, returns
None.

dataworkspaces.api.get_snapshot_history(workspace_uri_or_path: Optional[str] = None, reverse: bool =
False, max_count: Optional[int] = None, verbose: bool =
False)→ Iterable[dataworkspaces.api.SnapshotInfo]

Get the history of snapshots, starting with the oldest first (unless :reverse: is True). Returns a list of SnapshotInfo
instances, containing the snapshot number, hash, tag, timestamp, and message. If :max_count: is specified,
returns at most that many snapshots.

dataworkspaces.api.get_version()
Get the version string for the installed version of Data Workspaces

dataworkspaces.api.make_lineage_graph(output_file: str, workspace_uri_or_path: Optional[str] = None,
resource_name: Optional[str] = None, tag_or_hash: Optional[str]
= None, width: int = 1024, height: int = 800, verbose: bool =
False)→ None

Write a lineage graph as an html/javascript page to the specified file.

1.7. 7. Internals: Developer’s Guide 55

Data Workspaces Documentation, Release 1.5.2

dataworkspaces.api.make_lineage_table(workspace_uri_or_path: Optional[str] = None, tag_or_hash:
Optional[str] = None, verbose: bool = False)→
Iterable[Tuple[str, str, str, Optional[List[str]]]]

Make a table of the lineage for each resource. The columns are: ref, lineage type, details, inputs

dataworkspaces.api.restore(tag_or_hash: str, workspace_uri_or_path: Optional[str] = None, only:
Optional[List[str]] = None, leave: Optional[List[str]] = None, verbose: bool =
False)→ int

Restore to a previous snapshot, identified by either its hash or its tag (if one was specified). Parameters:

• only - an optional list of resources to store. If specified all other resources will be left as-is.

• leave - an optional list of resource to leave as-is. Both only and leave should not be specified together.

Returns the number of resources changed.

dataworkspaces.api.take_snapshot(workspace_uri_or_path: Optional[str] = None, tag: Optional[str] =
None, message: str = '', verbose: bool = False)→ str

Take a snapshot of the workspace, using the tag and message, if provided. Returns the snapshot hash (which can
be used to restore to this point).

1.7.6 Core Workspace API

Here is the detailed documentation for the Core Workspace API, found in dataworkspaces.workspace.

Main definitions of the workspace abstractions

Workspace backends, like git, subclass from the Workspace base class. Resource implementations (e.g. local files or
git resource) subclass from the Resource base class.

Optional capabilities for both workspace backends and resource backends are defined via abstract mixin classes. These
classes do not inherit from the base workspace/resource classes, to avoid issues with multiple inheritance.

Complex operations involving resources use the following pattern, where COMMAND is the command and CAPA-
BILITY is the capability needed to perform the command:

class CAPABILITYWorkspaceMixin:
...
def _COMMAND_precheck(self, resource_list:List[CAPABILITYResourceMixin]) -> None:
Backend can override to add more checks
for r in resource_list:
r.COMMAND_precheck()

def COMMAND(sef resource_list:List[CAPAIBILITYResourceMixin]) -> None:
self._COMMAND_precheck(resource_list)
...
for r in resource_list:
r.COMMAND()

The module dataworkspaces.commands.COMMAND should look like this:

def COMMAND_command(workspace, ...):
if not isinstance(workspace, CAPABILITYWorkspaceMixin):
raise ConfigurationError("Workspace %s does not support CAPABILITY"%

workspace.name)
mixin = cast(CAPABILITYWorkspaceMixin, workspace)

(continues on next page)

56 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

(continued from previous page)

... error checking ...

resource_list = ...

workspace.COMMAND(resource_list)
workspace.save("Completed command COMMAND")

Core Classes

class dataworkspaces.workspace.Workspace(name: str, dws_version: str, batch: bool = False, verbose: bool
= False)

add_resource(name: str, resource_type: str, role: str, *args, **kwargs)→
dataworkspaces.workspace.Resource

Add a resource to the repository for tracking.

abstract as_lineage_ws()→ dataworkspaces.workspace.SnapshotWorkspaceMixin
If this workspace supports snapshots and lineage, cast it to a SnapshotWorkspaceMixin. Otherwise, raise
an NotSupportedError exception.

abstract as_snapshot_ws()→ dataworkspaces.workspace.SnapshotWorkspaceMixin
If this workspace supports snapshots, cast it to a SnapshotWorkspaceMixin. Otherwise, raise an NotSup-
portedError exception.

batch
attribute: True if input from user should be avoided (bool)

clone_resource(name: str)→ dataworkspaces.workspace.LocalStateResourceMixin
Instantiate the resource locally. This is used in cases where the resource has local state.

dws_version
attribute: Version of dataworkspaces that was used to create the workspace (str)

get_global_param(param_name: str)→ Any
Returns the value of the global param if set, otherwise the default. If the param is not set, returns the default
value. If the param is not defined throws ParamNotFoundError.

abstract get_instance()→ str
Return a unique identifier for this instance of the workspace. For lineage tracking, it is assumed that only
one pipeline is running at a time in an instance. If the workspace exists on a local filesystem, then it should
correspond to the machine and path where the workspace resides. Typically, some combination of hostname
and user are sufficient.

Uniquenes of the instance is important for things like naming the results snapshot subdirectories.

get_local_param(param_name: str)→ Any
Returns the value of the local param if set, otherwise the default. If the param is not set, returns the default
value. If the param is not defined throws ParamNotFoundError.

get_names_for_resources_that_need_to_be_cloned()→ Iterable[str]
Find all the resources that have local state, but no local parameters (not even an empty dict). These needed
to be cloned. This is to be called during the pull() command.

get_names_of_resources_with_local_state()→ Iterable[str]
Return an iterable of the resource names in the workspace that have local state.

get_resource(name: str)→ dataworkspaces.workspace.Resource
Get the associated resource from the workspace metadata.

1.7. 7. Internals: Developer’s Guide 57

Data Workspaces Documentation, Release 1.5.2

abstract get_resource_names()→ Iterable[str]
Return an iterable of resource names. The names should be returned in a consistent order, specifically the
order in which they were added to the workspace. This supports backwards compatilbity for operations like
snapshots.

get_resource_role(resource_name)→ str
Get the role of a resource without having to instantiate it.

get_resource_type(resource_name)→ str
Get the type of a resource without having to instantiate it.

get_resources()→ Iterable[dataworkspaces.workspace.Resource]
Iterate through all the resources

abstract get_scratch_directory()→ str
Return an absolute path for the local scratch directory to be used by this workspace.

abstract get_workspace_local_path_if_any()→ Optional[str]
If the workspace maintains local state and has a “home” directory, return it. Otherwise, return None.

This is useful for things like providing defaults for resource local paths or providing special handling for
resources enclosed in the workspace (e.g. GitRepoResource vs. GitSubdirResource)

map_local_path_to_resource(path: str, expecting_a_code_resource: bool = False)→
dataworkspaces.utils.lineage_utils.ResourceRef

Given a path on the local filesystem, map it to a resource and the path within the resource. Raises PathNo-
tAResourceError if no match is found.

Note: this does not check whether the path already exists.

name
attribute: A short name for this workspace (str)

abstract save(message: str)→ None
Save the current state of the workspace

set_global_param(name: str, value: Any)→ None
Validate and set a global parameter. Setting does not necessarily take effect until save() is called

set_local_param(name: str, value: Any)→ None
Validate and set a local parameter. Setting does not necessarily take effect until save() is called

suggest_resource_name(resource_type: str, role: str, *args)
Given the arguments passed in for creating a resource, suggest a (unique) name for the resource.

validate_local_path_for_resource(proposed_resource_name: str, proposed_local_path: str)→ None
When creating a resource, validate that the proposed local path is usable for the resource. By default, this
checks existing resources with local state to see if they have conflicting paths and, if a local path exists for
the workspace, whether there is a conflict (the entire workspace cannot be used as a resource path).

Subclasses may want to add more checks. For subclasses that do not support any local state, including in
resources, they can override the base implementation and throw an exception.

validate_resource_name(resource_name: str, subpath: Optional[str] = None, expected_role:
Optional[str] = None)→ None

Validate that the given resource name and optional subpath are valid in the current state of the workspace.
Otherwise throws a ConfigurationError.

verbose
attribute: Print detailed logging (bool)

class dataworkspaces.workspace.ResourceRoles
This class defines constants for the four resource roles.

58 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

CODE = 'code'

INTERMEDIATE_DATA = 'intermediate-data'

RESULTS = 'results'

SOURCE_DATA_SET = 'source-data'

class dataworkspaces.workspace.Resource(resource_type: str, name: str, role: str, workspace:
dataworkspaces.workspace.Workspace)

Base class for all resources

get_params()→ Dict[str, Any]
Get the parameters that define the configuration of the resource globally.

has_results_role()

is_exported()→ bool
Returns True if this resource has an export parameter and it is True.

is_imported()→ bool
Returns True if this resource has an imported parameter and it is True.

name
attribute: unique name for this resource within the workspace (str)

resource_type
attribute: name for this resource’s type (e.g. git, local-files, etc.) (str)

role
Role of the resource, one of ResourceRoles

abstract validate_subpath_exists(subpath: str)→ None
Validate that the subpath is valid within this resource. Otherwise should raise a ConfigurationError.

workspace
attribute: The workspace that contains this resource (Workspace)

dataworkspaces.workspace.RESOURCE_ROLE_CHOICES = ['source-data', 'intermediate-data',
'code', 'results']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

Factory Classes and Functions

class dataworkspaces.workspace.WorkspaceFactory
This class collects the various ways of instantiating a workspace: creating from an existing one, initing a new
one, and cloning into a new environment.

Each backend should implement a subclass and provide a singleton instance as the FACTORY member of the
module.

abstract static clone_workspace(local_params: Dict[str, Any], batch: bool, verbose: bool, *args)→
dataworkspaces.workspace.Workspace

Clone an existing workspace into the local environment. Note that hostname is used as an instance identifier
(TODO: make this more generic).

This only clones the workspace itself, any local state resources should be cloned separately.

If a workspace has no local state, this factory method might not do anything.

1.7. 7. Internals: Developer’s Guide 59

Data Workspaces Documentation, Release 1.5.2

abstract static load_workspace(batch: bool, verbose: bool, parsed_uri: urllib.parse.ParseResult)→
dataworkspaces.workspace.Workspace

Instantiate and return a workspace.

dataworkspaces.workspace.load_workspace(uri: str, batch: bool, verbose: bool)→
dataworkspaces.workspace.Workspace

Given a requested workspace backend, and backend-specific parameters, instantiate and return a workspace. The
workspace is specified by a uri, where the backend-type is the scheme and rest is interpreted by the backend.

The backend name / scheme is used to load a backend module whose name is data-
workspaces.backends.SCHEME.

dataworkspaces.workspace.find_and_load_workspace(batch: bool, verbose: bool, uri_or_local_path:
Optional[str] = None)→
dataworkspaces.workspace.Workspace

This tries to find the workspace and load it. There are three cases:

1. If uri_or_local_path is a uri, we call load_workspace() directly

2. If uri_or_local_path is specified, but not a uri, we interpret it as a local path and try to instantitate a git-
backend workspace at that location in the loca filesystem.

3. If uri_or_local_path is not specified, we start at the current directory and search up the directory tree until
we find something that looks like a git backend workspace.

TODO: In the future, this should also look for a config file that might specify the workspace or list workspaces
by name.

dataworkspaces.workspace.init_workspace(backend_name: str, workspace_name: str, hostname: str, batch:
bool, verbose: bool, scratch_dir: str, *args, **kwargs)→
dataworkspaces.workspace.Workspace

Given a requested workspace backend, and backend-specific parameters, initialize a new workspace, then instan-
titate and return it.

A backend name is a module name. The module should have an init_workspace() function defined.

TODO: the hostname should be generalized as an “instance name”, but we also need backward compatibility.
TODO: is this function now redundant? Compare to load_workspace().

class dataworkspaces.workspace.ResourceFactory
Abstract factory class to be implemented for each resource type.

abstract clone(params: Dict[str, Any], workspace: dataworkspaces.workspace.Workspace)→
dataworkspaces.workspace.LocalStateResourceMixin

Instantiate a local copy of the resource that came from the remote origin. We don’t yet have local params,
since this resource is not yet on the local machine. If not in batch mode, this method can ask the user for any
additional information needed (e.g. a local path). In batch mode, should either come up with a reasonable
default or error out if not enough information is available.

abstract from_command_line(role: str, name: str, workspace: dataworkspaces.workspace.Workspace,
*args, **kwargs)→ dataworkspaces.workspace.Resource

Instantiate a resource object from the add command’s arguments

abstract from_json(params: Dict[str, Any], local_params: Dict[str, Any], workspace:
dataworkspaces.workspace.Workspace)→ dataworkspaces.workspace.Resource

Instantiate a resource object from saved params and local params

abstract has_local_state()→ bool
Return true if this resource has local state and needs a clone step the first time it is used.

60 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

abstract suggest_name(workspace: dataworkspaces.workspace.Workspace, role: str, *args)→ str
Given the arguments passed in to create a resource, suggest a name for the case where the user did not
provide one via –name. This will be used by suggest_resource_name() to find a short, but unique name for
the resource.

Mixins for Files and Local State

class dataworkspaces.workspace.FileResourceMixin
This is a mixin to be implemented by resources which provide a hierarchy of files. Examples include a git repo,
local filesystem, or S3 bucket. A database would be a resource that does NOT implement this API.

abstract add_results_file(data: Union[Dict[str, Any], List[Any]], rel_dest_path: str)→ None
Save JSON results data to the specified path in the resource. Note that, although this is usually used for
results role resources, it could also be used for intermediate-data resources if they are exported (causing
the lineage file to be written to the resource).

TODO: this is used for both results and lineage files. Perhaps we should either rename it to something like
add_json_file() or create a separate call for lineage.

abstract delete_file(rel_path: str)→ None
Delete a file from the resource. If the resource is read-only or otherwise does not support modifications,
should throw a NotSupportedError.

abstract does_subpath_exist(subpath: str, must_be_file: bool = False, must_be_directory: bool =
False)→ bool

Return True the subpath is valid within this resource, False otherwise. If must_be_file is True, return True
only if the subpath corresponds to content. If must_be_directory is True, return True only if the subpath
corresponds to a directory.

abstract ls(rel_path: str)→ List[str]
List the files under the relative path (use empty string for root)

abstract open(rel_path: str, mode: str)
Returns a file like object in the specified mode.

abstract read_results_file(subpath: str)→ Dict[str, Any]
Read and parse json results data from the specified path in the resource. If the path does not exist or is not
a file throw a ConfigurationError.

abstract results_copy_current_files(rel_dest_root: str, exclude_files: Set[str], exclude_dirs_re:
Pattern)→ None

A snapshot is being taken, and we want to copy the files in the resource to the relative subdirectory
rel_dest_root. We should exclude the files in the set exclude_files and exclude any directories matching
exclude_dirs_re (e.g. the directory to which the files are being moved).

By default results_move_current_files() is called, but the copy is used when we export the resource.

abstract results_move_current_files(rel_dest_root: str, exclude_files: Set[str], exclude_dirs_re:
Pattern)→ None

A snapshot is being taken, and we want to move the files in the resource to the relative subdirectory
rel_dest_root. We should exclude the files in the set exclude_files and exclude any directories matching
exclude_dirs_re (e.g. the directory to which the files are being moved).

abstract upload_file(src_local_path: str, rel_dest_path: str)→ None
Copy a local file to the specified path in the resource. This may be a local copy or an upload, depending on
the resource implmentation

class dataworkspaces.workspace.LocalStateResourceMixin
Mixin for the resource api for resources with local state that need to be “cloned”

1.7. 7. Internals: Developer’s Guide 61

Data Workspaces Documentation, Release 1.5.2

get_local_params()→ Dict[str, Any]
Get the parameters that define any local configuration of the resource (e.g. local filepaths)

abstract get_local_path_if_any()→ Optional[str]
If the resource has an associated local path on the system, return it. Othewise, return None. Even if it has
local state, this might not be a file-based resource. Thus, the return value is an Optional string.

abstract pull()
Update this resource with the latest changes from the remote origin.

abstract pull_precheck()
Perform any prechecks before updating this resource from the remote origin.

abstract push()
Upload this resource’s changes to the remote origin.

abstract push_precheck()
Perform any prechecks before uploading this resource’s changes to the remote origin.

validate_subpath_exists(subpath: str)→ None
Validate that the subpath is valid within this resource. Default implementation checks the local filesystem
if any. If the resource is not file-based, then the subclass should override this method to implement the
check.

Mixins for Synchronized and Centralized Workspaces

Workspace backends should inherit from one of either SyncedWorkspaceMixin or CentralWorkspaceMixin.

class dataworkspaces.workspace.SyncedWorkspaceMixin
This mixin is for workspaces that support synchronizing with a master copy via push/pull operations.

abstract publish(*args)→ None
Make a local repo available at a remote location. For example, we may make it available on GitHub, GitLab
or some similar service.

pull_resources(resource_list: List[dataworkspaces.workspace.LocalStateResourceMixin])→ None
Download latest updates from remote origin. By default, includes any resources that support syncing via
the LocalStateResourceMixin.

Note that this does not handle the actual workspace pull or the cloning of new resources.

abstract pull_workspace()→ dataworkspaces.workspace.SyncedWorkspaceMixin
Pull the workspace itself and return a new workspace object reflecting the latest state changes.

push(resource_list: List[dataworkspaces.workspace.LocalStateResourceMixin])→ None
Upload updates to remote origin.

Backend subclass also needs to handle syncing of the workspace itself. If this is called with an empty set of
resources, then we are just syncing the workspace. Pushing the workspace should include pushing of any
new resources.

class dataworkspaces.workspace.CentralWorkspaceMixin
This mixin is for workspaces that have a central store and do not need synchronization of the workspace itself.
They still may need to sychronize individual resources.

abstract get_resources_that_need_to_be_cloned()→ List[str]
Return a list of resources with local state that are not present in the local system. This is used after a pull
to clone these resources.

62 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

pull_resources(resource_list: List[dataworkspaces.workspace.LocalStateResourceMixin])→ None
Download latest resource updates from remote origin for resources that support syncing via the Local-
StateResourceMixin.

push_resources(resource_list: List[dataworkspaces.workspace.LocalStateResourceMixin])→ None
Upload resource updates to remote origin.

Mixins for Snapshot Functionality

To support snapshots, the interfaces defined by SnapshotWorkspaceMixin and SnapshotResourceMixin should
be implmented by workspace backends and resources, respectively. SnapshotMetadata defines the metadata to be
stored for each snapshot.

class dataworkspaces.workspace.SnapshotMetadata(hashval: str, tags: List[str], message: str, hostname:
str, timestamp: str, relative_destination_path: str,
restore_hashes: Dict[str, Optional[str]], metrics:
Optional[Dict[str, Any]] = None, updated_timestamp:
Optional[str] = None)

The metadata we store for each snapshot (in addition to the manifest). relative_destination_path refers to the path
used in resources that copy their current state to a subdirectory for each snapshot.

static from_json(data: Dict[str, Any])→ dataworkspaces.workspace.SnapshotMetadata

has_tag(tag)

matches_partial_hash(partial_hash)
A partial hash matches if the full hash starts with it, normalizing to lower case.

to_json()→ Dict[str, Any]

class dataworkspaces.workspace.SnapshotWorkspaceMixin
Mixin class for workspaces that support snapshots and restores.

delete_snapshot(hash_val: str, include_resources=False)→ None
Given a snapshot hash, delete the entry from the workspace’s metadata. If include_resources is True, then
delete any data from the associated resources (e.g. snapshot subdirectories).

abstract get_lineage_store()→ dataworkspaces.utils.lineage_utils.LineageStore
Return the store for lineage data. If this workspace backend does not support lineage for some reason, the
call should raise a ConfigurationError.

get_most_recent_snapshot()→ Optional[dataworkspaces.workspace.SnapshotMetadata]
Helper function to return the metadata for the most recent snapshot (by timestamp). Returns None if no
snapshot found

abstract get_next_snapshot_number()→ int
Return a number that can be used for this snapshot. For a given local copy of thw workspace, it is guaranteed
to be unique and increasing. It is not guarenteed to be globally unique (need to combine with hostname to
get that).

abstract get_snapshot_by_partial_hash(partial_hash: str)→
dataworkspaces.workspace.SnapshotMetadata

Given a partial hash for the snapshot, find the snapshot whose hash starts with this prefix and return the
metadata asssociated with the snapshot.

abstract get_snapshot_by_tag(tag: str)→ dataworkspaces.workspace.SnapshotMetadata
Given a tag, return the asssociated snapshot metadata. This lookup could be slower ,if a reverse index is
not kept.

1.7. 7. Internals: Developer’s Guide 63

Data Workspaces Documentation, Release 1.5.2

get_snapshot_by_tag_or_hash(tag_or_hash: str)→ dataworkspaces.workspace.SnapshotMetadata
Given a string that is either a tag or a (partial)hash corresponding to a snapshot, return the associated
resrouce metadata. Throws a ConfigurationError if no entry is found.

get_snapshot_manifest(hash_val: str)→ List[Any]
Returns the snapshot manifest for the given hash as a parsed JSON structure. The top-level dict maps
resource names resource parameters.

abstract get_snapshot_metadata(hash_val: str)→ dataworkspaces.workspace.SnapshotMetadata
Given the full hash of a snapshot, return the metadata. This lookup should be quick.

abstract list_snapshots(reverse: bool = True, max_count: Optional[int] = None)→
Iterable[dataworkspaces.workspace.SnapshotMetadata]

Returns an iterable of snapshot metadata, sorted by timestamp ascending (or descending if reverse is True).
If max_count is specified, return at most that many snaphsots.

abstract remove_tag_from_snapshot(hash_val: str, tag: str)→ None
Remove the specified tag from the specified snapshot. Throw an InternalError if either the snapshot or the
tag do not exist.

restore(snapshot_hash: str, restore_hashes: Dict[str, Optional[str]], restore_resources:
List[dataworkspaces.workspace.SnapshotResourceMixin])→ None

Restore the specified resources to the specified hashes. The list should have been previously filtered to
include only those with valid (not None) restore hashes.

abstract save_snapshot_metadata_and_manifest(metadata:
dataworkspaces.workspace.SnapshotMetadata,
manifest: bytes)→ None

Save the snapshot metadata and manifest using the hash in metadata.hashval.

snapshot(tag: Optional[str] = None, message: str = '')→
Tuple[dataworkspaces.workspace.SnapshotMetadata, bytes]

Take snapshot of the resources in the workspace, and metadata for the snapshot and a manifest in the
workspace. We assume that the tag does not already exist (checks can be made in the command before
calling this method).

We also copy the lineage data if the workspace supports lineage.

Returns the snapshot metadata and the (binary) snapshot hash. These should be saved into the workspace
by the caller (i.e. the snapshot command). We don’t do that here, as futher interactions with the user may
be needed. In particular, if the hash is identical to a previous hash, we ask the user if they want to overwrite.

abstract supports_lineage()→ bool
Return True if this workspace’s backend supports lineage, False otherwise

write_export_lineage_for_snapshot(current_resources: List[dataworkspaces.workspace.Resource])
→ None

For all exported resources, we write out the lineage.json file in the root directoryfor the resource.

write_result_lineage_for_snapshot(current_resources: List[dataworkspaces.workspace.Resource],
rel_dest_path: str)→ None

For all results resources, we write out the lineage.json files in the snapshot directory.

class dataworkspaces.workspace.SnapshotResourceMixin
Mixin for the resource api for resources that can take snapshots.

copy_imported_lineage(lineage_store: dataworkspaces.utils.lineage_utils.LineageStore)→ None
If imported lineage, copy the lineage.json file to the lineage store. The pull_resources() method on the
workspace will call it after pulling the resource.

If the resource does not store files locally, this default implementation will need to be overridden.

64 Chapter 1. Data management for reproducability and collaboration

Data Workspaces Documentation, Release 1.5.2

abstract delete_snapshot(workspace_snapshot_hash: str, resource_restore_hash: str, relative_path:
str)→ None

Delete any state associated with the snapshot, including any files under relative_path

abstract restore(restore_hashval: str)→ None

abstract restore_precheck(restore_hashval: str)→ None
Run any prechecks before restoring to the specified hash value (aka certificate). This should throw a Con-
figurationError if the restore would fail for some reason.

abstract snapshot()→ Tuple[Optional[str], Optional[str]]
Take the actual snapshot of the resource and return a tuple of two hash values, the first for comparison, and
the second for restoring. The comparison hash value is the one we save in the snapshot manifest. The restore
hash value is saved in the snapshot metadata. In many cases both hashes are the same. If the resource does
not support restores, it can return None for the second hash. This will cause attempted restores involving
this resource to error out.

abstract snapshot_precheck()→ None
Run any prechecks before taking a snapshot. This should throw a ConfigurationError if the snapshot would
fail for some reason.

1.8 Indices and tables

• genindex

• modindex

• search

1.8. Indices and tables 65

Data Workspaces Documentation, Release 1.5.2

66 Chapter 1. Data management for reproducability and collaboration

PYTHON MODULE INDEX

d
dataworkspaces.api, 54
dataworkspaces.kits.jupyter, 33
dataworkspaces.kits.scikit_learn, 37
dataworkspaces.kits.tensorflow, 40
dataworkspaces.lineage, 28
dataworkspaces.workspace, 56

67

Data Workspaces Documentation, Release 1.5.2

68 Python Module Index

INDEX

Symbols
--batch

dws command line option, 16
--branch

dws-add-git command line option, 17
--compute-hash

dws-add-local-files command line option,
18

dws-add-rclone command line option, 18
--config

dws-add-rclone command line option, 18
--create-resources

dws-init command line option, 23
--export

dws-add-git command line option, 17
dws-add-local-files command line option,

18
dws-add-rclone command line option, 19

--force-rebuild
dws-deploy-build command line option, 22

--format
dws-lineage-graph command line option, 24

--git-fat-attributes
dws-init command line option, 23

--git-fat-port
dws-init command line option, 23

--git-fat-remote
dws-init command line option, 23

--git-fat-user
dws-init command line option, 23

--git-lfs-attributes
dws-init command line option, 23

--git-user-email
dws-deploy-build command line option, 22

--git-user-name
dws-deploy-build command line option, 22

--height
dws-lineage-graph command line option, 24

--history
dws-status command line option, 28

--hostname
dws-clone command line option, 20

dws-init command line option, 23
--image-name

dws-deploy-build command line option, 22
dws-deploy-run command line option, 22

--imported
dws-add-git command line option, 17
dws-add-local-files command line option,

18
dws-add-rclone command line option, 19

--leave
dws-restore command line option, 27

--limit
dws-report-history command line option,

26
dws-status command line option, 28

--master
dws-add-rclone command line option, 19

--message
dws-snapshot command line option, 28

--name
dws-add-api-resource command line

option, 17
dws-add-git command line option, 17
dws-add-local-files command line option,

18
dws-add-rclone command line option, 18
dws-add-s3 command line option, 19

--no-include-resources
dws-delete-snapshot command line option,

21
--no-mount-ssh-keys

dws-deploy-run command line option, 22
--only

dws-pull command line option, 25
dws-push command line option, 25
dws-restore command line option, 27

--only-workspace
dws-pull command line option, 25
dws-push command line option, 25

--read-only
dws-add-git command line option, 17

--resource

69

Data Workspaces Documentation, Release 1.5.2

dws-config command line option, 20
dws-lineage-graph command line option, 24
dws-report-results command line option,

27
--role

dws-add-api-resource command line
option, 17

dws-add-git command line option, 17
dws-add-local-files command line option,

18
dws-add-rclone command line option, 18
dws-add-s3 command line option, 19

--scratch-directory
dws-init command line option, 23

--size-only
dws-add-rclone command line option, 19

--skip
dws-publish command line option, 24
dws-pull command line option, 25
dws-push command line option, 25

--snapshot
dws-lineage-graph command line option, 24
dws-report-lineage command line option,

26
dws-report-results command line option,

27
--strict

dws-restore command line option, 27
--sync-mode

dws-add-rclone command line option, 19
--verbose

dws command line option, 16
--width

dws-lineage-graph command line option, 24
--workspace-dir

dws-add command line option, 17
dws-config command line option, 20
dws-delete-snapshot command line option,

21
dws-deploy command line option, 21
dws-diff command line option, 22
dws-lineage command line option, 24
dws-publish command line option, 24
dws-pull command line option, 25
dws-push command line option, 25
dws-report command line option, 26
dws-restore command line option, 27
dws-snapshot command line option, 28
dws-status command line option, 28

-b
dws command line option, 16

-e
dws-add-git command line option, 17

dws-add-local-files command line option,
18

dws-add-rclone command line option, 19
-f

dws-deploy-build command line option, 22
-m

dws-snapshot command line option, 28
-r

dws-add-git command line option, 17
[PARAMETER_NAME]

dws-config command line option, 21
[PARAMETER_VALUE]

dws-config command line option, 21

A
abort() (dataworkspaces.lineage.Lineage method), 30
add_lineage_to_keras_model_class() (in module

dataworkspaces.kits.tensorflow), 42
add_output_path() (dataworkspaces.lineage.Lineage

method), 30
add_output_ref() (dataworkspaces.lineage.Lineage

method), 30
add_param() (dataworkspaces.lineage.Lineage method),

30
add_resource() (data-

workspaces.workspace.Workspace method),
57

add_results_file() (data-
workspaces.workspace.FileResourceMixin
method), 61

as_lineage_ws() (data-
workspaces.workspace.Workspace method),
57

as_results_step() (data-
workspaces.lineage.LineageBuilder method),
32

as_script_step() (data-
workspaces.lineage.LineageBuilder method),
32

as_snapshot_ws() (data-
workspaces.workspace.Workspace method),
57

B
batch (dataworkspaces.workspace.Workspace attribute),

57
BinaryClassificationMetrics (class in data-

workspaces.kits.scikit_learn), 37
BUCKET_NAME

dws-add-s3 command line option, 20

C
CentralWorkspaceMixin (class in data-

workspaces.workspace), 62

70 Index

Data Workspaces Documentation, Release 1.5.2

CheckpointConfig (class in data-
workspaces.kits.tensorflow), 42

clone() (dataworkspaces.workspace.ResourceFactory
method), 60

clone_resource() (data-
workspaces.workspace.Workspace method),
57

clone_workspace() (data-
workspaces.workspace.WorkspaceFactory
static method), 59

CODE (dataworkspaces.workspace.ResourceRoles at-
tribute), 58

complete() (dataworkspaces.lineage.Lineage method),
31

copy_imported_lineage() (data-
workspaces.workspace.SnapshotResourceMixin
method), 64

D
dataworkspaces.api

module, 54
dataworkspaces.kits.jupyter

module, 33
dataworkspaces.kits.scikit_learn

module, 37
dataworkspaces.kits.tensorflow

module, 40
dataworkspaces.lineage

module, 28
dataworkspaces.workspace

module, 56
delete_file() (data-

workspaces.workspace.FileResourceMixin
method), 61

delete_snapshot() (data-
workspaces.workspace.SnapshotResourceMixin
method), 64

delete_snapshot() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 63

DIRECTORY
dws-clone command line option, 20

does_subpath_exist() (data-
workspaces.workspace.FileResourceMixin
method), 61

dws command line option
--batch, 16
--verbose, 16
-b, 16

dws_version (dataworkspaces.workspace.Workspace
attribute), 57

dws-add command line option
--workspace-dir, 17

dws-add-api-resource command line option

--name, 17
--role, 17

dws-add-git command line option
--branch, 17
--export, 17
--imported, 17
--name, 17
--read-only, 17
--role, 17
-e, 17
-r, 17
PATH, 18

dws-add-local-files command line option
--compute-hash, 18
--export, 18
--imported, 18
--name, 18
--role, 18
-e, 18
PATH, 18

dws-add-rclone command line option
--compute-hash, 18
--config, 18
--export, 19
--imported, 19
--master, 19
--name, 18
--role, 18
--size-only, 19
--sync-mode, 19
-e, 19
LOCAL_PATH, 19
REMOTE, 19

dws-add-s3 command line option
--name, 19
--role, 19
BUCKET_NAME, 20

dws-clone command line option
--hostname, 20
DIRECTORY, 20
REPOSITORY, 20

dws-config command line option
--resource, 20
--workspace-dir, 20
[PARAMETER_NAME], 21
[PARAMETER_VALUE], 21

dws-delete-snapshot command line option
--no-include-resources, 21
--workspace-dir, 21
TAG_OR_HASH, 21

dws-deploy command line option
--workspace-dir, 21

dws-deploy-build command line option
--force-rebuild, 22

Index 71

Data Workspaces Documentation, Release 1.5.2

--git-user-email, 22
--git-user-name, 22
--image-name, 22
-f, 22

dws-deploy-run command line option
--image-name, 22
--no-mount-ssh-keys, 22

dws-diff command line option
--workspace-dir, 22
SNAPSHOT_OR_TAG1, 22
SNAPSHOT_OR_TAG2, 22

dws-init command line option
--create-resources, 23
--git-fat-attributes, 23
--git-fat-port, 23
--git-fat-remote, 23
--git-fat-user, 23
--git-lfs-attributes, 23
--hostname, 23
--scratch-directory, 23
NAME, 23

dws-lineage command line option
--workspace-dir, 24

dws-lineage-graph command line option
--format, 24
--height, 24
--resource, 24
--snapshot, 24
--width, 24
OUTPUT_FILE, 24

dws-publish command line option
--skip, 24
--workspace-dir, 24
REMOTE_REPOSITORY, 25

dws-pull command line option
--only, 25
--only-workspace, 25
--skip, 25
--workspace-dir, 25

dws-push command line option
--only, 25
--only-workspace, 25
--skip, 25
--workspace-dir, 25

dws-report command line option
--workspace-dir, 26

dws-report-history command line option
--limit, 26

dws-report-lineage command line option
--snapshot, 26

dws-report-results command line option
--resource, 27
--snapshot, 27

dws-restore command line option

--leave, 27
--only, 27
--strict, 27
--workspace-dir, 27
TAG_OR_HASH, 27

dws-snapshot command line option
--message, 28
--workspace-dir, 28
-m, 28
TAG, 28

dws-status command line option
--history, 28
--limit, 28
--workspace-dir, 28

DwsModelCheckpoint (class in data-
workspaces.kits.tensorflow), 42

E
eval() (dataworkspaces.lineage.LineageBuilder

method), 32

F
FileResourceMixin (class in data-

workspaces.workspace), 61
find_and_load_workspace() (in module data-

workspaces.workspace), 60
fit() (dataworkspaces.kits.scikit_learn.LineagePredictor

method), 38
from_command_line() (data-

workspaces.workspace.ResourceFactory
method), 60

from_json() (dataworkspaces.workspace.ResourceFactory
method), 60

from_json() (dataworkspaces.workspace.SnapshotMetadata
static method), 63

G
get_api_version() (in module dataworkspaces.api),

55
get_filesystem_for_resource() (in module data-

workspaces.api), 55
get_global_param() (data-

workspaces.workspace.Workspace method),
57

get_instance() (data-
workspaces.workspace.Workspace method),
57

get_lineage_store() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 63

get_local_param() (data-
workspaces.workspace.Workspace method),
57

72 Index

Data Workspaces Documentation, Release 1.5.2

get_local_params() (data-
workspaces.workspace.LocalStateResourceMixin
method), 61

get_local_path_for_resource() (in module data-
workspaces.api), 55

get_local_path_if_any() (data-
workspaces.workspace.LocalStateResourceMixin
method), 62

get_most_recent_snapshot() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 63

get_names_for_resources_that_need_to_be_cloned()
(dataworkspaces.workspace.Workspace
method), 57

get_names_of_resources_with_local_state()
(dataworkspaces.workspace.Workspace
method), 57

get_next_snapshot_number() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 63

get_params() (dataworkspaces.workspace.Resource
method), 59

get_resource() (data-
workspaces.workspace.Workspace method),
57

get_resource_info() (in module data-
workspaces.api), 55

get_resource_names() (data-
workspaces.workspace.Workspace method),
57

get_resource_role() (data-
workspaces.workspace.Workspace method),
58

get_resource_type() (data-
workspaces.workspace.Workspace method),
58

get_resources() (data-
workspaces.workspace.Workspace method),
58

get_resources_that_need_to_be_cloned() (data-
workspaces.workspace.CentralWorkspaceMixin
method), 62

get_results() (in module dataworkspaces.api), 55
get_scratch_directory() (data-

workspaces.workspace.Workspace method),
58

get_snapshot_by_partial_hash() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 63

get_snapshot_by_tag() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 63

get_snapshot_by_tag_or_hash() (data-
workspaces.workspace.SnapshotWorkspaceMixin

method), 63
get_snapshot_history() (in module data-

workspaces.api), 55
get_snapshot_manifest() (data-

workspaces.workspace.SnapshotWorkspaceMixin
method), 64

get_snapshot_metadata() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 64

get_step_name_for_notebook() (in module data-
workspaces.kits.jupyter), 33

get_version() (in module dataworkspaces.api), 55
get_workspace_local_path_if_any() (data-

workspaces.workspace.Workspace method),
58

H
has_local_state() (data-

workspaces.workspace.ResourceFactory
method), 60

has_results_role() (data-
workspaces.workspace.Resource method),
59

has_tag() (dataworkspaces.workspace.SnapshotMetadata
method), 63

hashval (dataworkspaces.api.SnapshotInfo property), 54

I
init_workspace() (in module data-

workspaces.workspace), 60
INTERMEDIATE_DATA (data-

workspaces.workspace.ResourceRoles at-
tribute), 59

is_exported() (dataworkspaces.workspace.Resource
method), 59

is_imported() (dataworkspaces.workspace.Resource
method), 59

is_notebook() (in module data-
workspaces.kits.jupyter), 33

L
Lineage (class in dataworkspaces.lineage), 30
LineageBuilder (class in dataworkspaces.lineage), 31
LineagePredictor (class in data-

workspaces.kits.scikit_learn), 37
list_snapshots() (data-

workspaces.workspace.SnapshotWorkspaceMixin
method), 64

load_dataset_from_resource() (in module data-
workspaces.kits.scikit_learn), 39

load_workspace() (data-
workspaces.workspace.WorkspaceFactory
static method), 59

Index 73

Data Workspaces Documentation, Release 1.5.2

load_workspace() (in module data-
workspaces.workspace), 60

LOCAL_PATH
dws-add-rclone command line option, 19

local_path (dataworkspaces.api.ResourceInfo prop-
erty), 54

LocalStateResourceMixin (class in data-
workspaces.workspace), 61

ls() (dataworkspaces.workspace.FileResourceMixin
method), 61

M
make_lineage_graph() (in module data-

workspaces.api), 55
make_lineage_table() (in module data-

workspaces.api), 55
map_local_path_to_resource() (data-

workspaces.workspace.Workspace method),
58

matches_partial_hash() (data-
workspaces.workspace.SnapshotMetadata
method), 63

message (dataworkspaces.api.SnapshotInfo property), 55
Metrics (class in dataworkspaces.kits.scikit_learn), 38
metrics (dataworkspaces.api.SnapshotInfo property), 55
mode (dataworkspaces.kits.tensorflow.CheckpointConfig

property), 42
model_name (dataworkspaces.kits.tensorflow.CheckpointConfig

property), 42
module

dataworkspaces.api, 54
dataworkspaces.kits.jupyter, 33
dataworkspaces.kits.scikit_learn, 37
dataworkspaces.kits.tensorflow, 40
dataworkspaces.lineage, 28
dataworkspaces.workspace, 56

monitor (dataworkspaces.kits.tensorflow.CheckpointConfig
property), 42

MulticlassClassificationMetrics (class in data-
workspaces.kits.scikit_learn), 38

N
NAME

dws-init command line option, 23
name (dataworkspaces.api.ResourceInfo property), 54
name (dataworkspaces.workspace.Resource attribute), 59
name (dataworkspaces.workspace.Workspace attribute),

58
NotebookLineageBuilder (class in data-

workspaces.kits.jupyter), 33

O
open() (dataworkspaces.workspace.FileResourceMixin

method), 61

OUTPUT_FILE
dws-lineage-graph command line option, 24

P
PATH

dws-add-git command line option, 18
dws-add-local-files command line option,

18
predict() (dataworkspaces.kits.scikit_learn.LineagePredictor

method), 38
print_metrics() (data-

workspaces.kits.scikit_learn.BinaryClassificationMetrics
method), 37

print_metrics() (data-
workspaces.kits.scikit_learn.Metrics method),
38

print_metrics() (data-
workspaces.kits.scikit_learn.MulticlassClassificationMetrics
method), 39

publish() (dataworkspaces.workspace.SyncedWorkspaceMixin
method), 62

pull() (dataworkspaces.workspace.LocalStateResourceMixin
method), 62

pull_precheck() (data-
workspaces.workspace.LocalStateResourceMixin
method), 62

pull_resources() (data-
workspaces.workspace.CentralWorkspaceMixin
method), 62

pull_resources() (data-
workspaces.workspace.SyncedWorkspaceMixin
method), 62

pull_workspace() (data-
workspaces.workspace.SyncedWorkspaceMixin
method), 62

push() (dataworkspaces.workspace.LocalStateResourceMixin
method), 62

push() (dataworkspaces.workspace.SyncedWorkspaceMixin
method), 62

push_precheck() (data-
workspaces.workspace.LocalStateResourceMixin
method), 62

push_resources() (data-
workspaces.workspace.CentralWorkspaceMixin
method), 63

R
read_results_file() (data-

workspaces.workspace.FileResourceMixin
method), 61

REMOTE
dws-add-rclone command line option, 19

REMOTE_REPOSITORY
dws-publish command line option, 25

74 Index

Data Workspaces Documentation, Release 1.5.2

remove_tag_from_snapshot() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 64

REPOSITORY
dws-clone command line option, 20

Resource (class in dataworkspaces.workspace), 59
RESOURCE_ROLE_CHOICES (in module data-

workspaces.workspace), 59
resource_type (dataworkspaces.api.ResourceInfo

property), 54
resource_type (dataworkspaces.workspace.Resource

attribute), 59
ResourceFactory (class in dataworkspaces.workspace),

60
ResourceFileSystem (class in dataworkspaces.api), 54
ResourceInfo (class in dataworkspaces.api), 54
ResourceRef (class in dataworkspaces.lineage), 30
ResourceRoles (class in dataworkspaces.workspace),

58
restore() (dataworkspaces.workspace.SnapshotResourceMixin

method), 65
restore() (dataworkspaces.workspace.SnapshotWorkspaceMixin

method), 64
restore() (in module dataworkspaces.api), 56
restore_precheck() (data-

workspaces.workspace.SnapshotResourceMixin
method), 65

RESULTS (dataworkspaces.workspace.ResourceRoles at-
tribute), 59

results_copy_current_files() (data-
workspaces.workspace.FileResourceMixin
method), 61

results_move_current_files() (data-
workspaces.workspace.FileResourceMixin
method), 61

ResultsLineage (class in dataworkspaces.lineage), 31
role (dataworkspaces.api.ResourceInfo property), 54
role (dataworkspaces.workspace.Resource attribute), 59

S
save() (dataworkspaces.workspace.Workspace method),

58
save_best_only (data-

workspaces.kits.tensorflow.CheckpointConfig
property), 42

save_freq (dataworkspaces.kits.tensorflow.CheckpointConfig
property), 42

save_snapshot_metadata_and_manifest() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 64

score() (dataworkspaces.kits.scikit_learn.BinaryClassificationMetrics
method), 37

score() (dataworkspaces.kits.scikit_learn.LineagePredictor
method), 38

score() (dataworkspaces.kits.scikit_learn.Metrics
method), 38

score() (dataworkspaces.kits.scikit_learn.MulticlassClassificationMetrics
method), 39

set_global_param() (data-
workspaces.workspace.Workspace method),
58

set_local_param() (data-
workspaces.workspace.Workspace method),
58

snapshot() (dataworkspaces.workspace.SnapshotResourceMixin
method), 65

snapshot() (dataworkspaces.workspace.SnapshotWorkspaceMixin
method), 64

snapshot_number (dataworkspaces.api.SnapshotInfo
property), 55

SNAPSHOT_OR_TAG1
dws-diff command line option, 22

SNAPSHOT_OR_TAG2
dws-diff command line option, 22

snapshot_precheck() (data-
workspaces.workspace.SnapshotResourceMixin
method), 65

SnapshotInfo (class in dataworkspaces.api), 54
SnapshotMetadata (class in data-

workspaces.workspace), 63
SnapshotResourceMixin (class in data-

workspaces.workspace), 64
SnapshotWorkspaceMixin (class in data-

workspaces.workspace), 63
SOURCE_DATA_SET (data-

workspaces.workspace.ResourceRoles at-
tribute), 59

suggest_name() (data-
workspaces.workspace.ResourceFactory
method), 60

suggest_resource_name() (data-
workspaces.workspace.Workspace method),
58

supports_lineage() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 64

SyncedWorkspaceMixin (class in data-
workspaces.workspace), 62

T
TAG

dws-snapshot command line option, 28
TAG_OR_HASH

dws-delete-snapshot command line option,
21

dws-restore command line option, 27
tags (dataworkspaces.api.SnapshotInfo property), 55
take_snapshot() (in module dataworkspaces.api), 56

Index 75

Data Workspaces Documentation, Release 1.5.2

timestamp (dataworkspaces.api.SnapshotInfo property),
55

to_json() (dataworkspaces.workspace.SnapshotMetadata
method), 63

U
upload_file() (data-

workspaces.workspace.FileResourceMixin
method), 61

V
validate_local_path_for_resource() (data-

workspaces.workspace.Workspace method),
58

validate_resource_name() (data-
workspaces.workspace.Workspace method),
58

validate_subpath_exists() (data-
workspaces.workspace.LocalStateResourceMixin
method), 62

validate_subpath_exists() (data-
workspaces.workspace.Resource method),
59

verbose (dataworkspaces.workspace.Workspace at-
tribute), 58

W
with_code_path() (data-

workspaces.lineage.LineageBuilder method),
32

with_code_ref() (data-
workspaces.lineage.LineageBuilder method),
32

with_input_path() (data-
workspaces.lineage.LineageBuilder method),
32

with_input_paths() (data-
workspaces.lineage.LineageBuilder method),
32

with_input_ref() (data-
workspaces.lineage.LineageBuilder method),
32

with_no_inputs() (data-
workspaces.lineage.LineageBuilder method),
32

with_parameters() (data-
workspaces.lineage.LineageBuilder method),
32

with_step_name() (data-
workspaces.lineage.LineageBuilder method),
32

with_workspace_directory() (data-
workspaces.lineage.LineageBuilder method),
32

Workspace (class in dataworkspaces.workspace), 57
workspace (dataworkspaces.workspace.Resource

attribute), 59
WorkspaceFactory (class in data-

workspaces.workspace), 59
write_export_lineage_for_snapshot() (data-

workspaces.workspace.SnapshotWorkspaceMixin
method), 64

write_result_lineage_for_snapshot() (data-
workspaces.workspace.SnapshotWorkspaceMixin
method), 64

write_results() (data-
workspaces.lineage.ResultsLineage method),
31

76 Index

	Data management for reproducability and collaboration
	1. Introduction
	Quick Start
	Installation
	Prerequisites
	Installation from the Python Package Index (PyPi)
	Extra Dependencies
	Installation via the source tree

	Concepts
	Commmand Line Interface
	Commands
	Workflow
	Collaboration

	Sharing lineage across workspaces

	2. Tutorial
	Further Experiments
	Publishing a workspace
	Cloning a workspace
	Sharing updates

	3. Command Reference
	dws
	add
	api-resource
	git
	local-files
	rclone
	s3

	clone
	config
	delete-snapshot
	deploy
	build
	run

	diff
	init
	lineage
	graph

	publish
	pull
	push
	report
	history
	lineage
	results
	status

	restore
	snapshot
	status
	version

	4. Lineage API
	Classes
	Using Lineage
	Consistency

	5. Kits Reference
	Jupyter
	Magics
	Limitations
	Loading the magics
	Magic Command reference

	Scikit-learn
	TensorFlow

	6. Resource Reference
	Git resources
	Examples

	Support for Large Files: Git-lfs and Git-fat integration
	Git-lfs
	Git-fat
	Example

	Adding resources using rclone
	Example
	Configuration Files
	rclone synchronization options

	S3 Resources
	Installation
	Adding an S3 Resource
	Accessing Files
	Snapshots
	Feedback Requested

	7. Internals: Developer’s Guide
	Installation and setup for development
	Overall Design
	Code Layout
	Git Database Layout

	Command Design
	Resource Design
	Source Data Sets
	Intermediate Data
	Results

	Integration API
	Core Workspace API
	Core Classes
	Factory Classes and Functions
	Mixins for Files and Local State
	Mixins for Synchronized and Centralized Workspaces
	Mixins for Snapshot Functionality

	Indices and tables

	Python Module Index
	Index

